Skip to main content
Top
Published in:

01-10-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Growth of a Grain during the Annealing of Iron Deformed at 250°C by Shear under Pressure

Authors: K. E. Shugaev, M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The recrystallization of pure iron deformed at 250°C by shear under pressure has been studied by scanning electron microscopy and durometry. The completeness of dynamic recrystallization has an effect on further static recrystallization: in a structure of a mixed type (formed by dislocation cells and individual recrystallized grains), the appreciable growth of a grain is started at a temperature that is 100°C lower than in a submicrocrystalline (SMC) structure (composed of grains formed as a result of dynamic recrystallization). An inhomogeneous character of the structure created under dynamic recrystallization conditions causes its low thermal stability. For the SMC structure, its propensity to secondary recrystallization has been revealed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu, “Structural evolutions of metallic materials processed by severe plastic deformation,” Mater. Sci. Eng., R 133, 1–59 (2018). Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu, “Structural evolutions of metallic materials processed by severe plastic deformation,” Mater. Sci. Eng., R 133, 1–59 (2018).
2.
go back to reference M. V. Markushev and M. Yu. Murashkin, “Structure and mechanical behavior of the AMg6 aluminum alloy after severe plastic deformation and annealing: I. Grain structure and texture,” Phys. Met. Metallogr. 91 (5), 522–527 (2001). M. V. Markushev and M. Yu. Murashkin, “Structure and mechanical behavior of the AMg6 aluminum alloy after severe plastic deformation and annealing: I. Grain structure and texture,” Phys. Met. Metallogr. 91 (5), 522–527 (2001).
3.
go back to reference V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, and V. A. Kukareko, “Recrystallization in microcrystalline copper and nickel produced by equal-channel angular pressing: I. Structural investigations. Effect of anomalous growth,” Phys. Met. Metallogr. 96 (5), 486–495 (2003). V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, and V. A. Kukareko, “Recrystallization in microcrystalline copper and nickel produced by equal-channel angular pressing: I. Structural investigations. Effect of anomalous growth,” Phys. Met. Metallogr. 96 (5), 486–495 (2003).
4.
go back to reference P. Ghosh, O. Renk, and R. Pippan, “Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel,” Mater. Sci. Eng., A 684, 101–109 (2017).CrossRef P. Ghosh, O. Renk, and R. Pippan, “Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel,” Mater. Sci. Eng., A 684, 101–109 (2017).CrossRef
5.
go back to reference F. Yuan, P. Jiang, and X. Wu, “Annealing and strain rate effects on the mechanical behavior of ultrafine-grained iron produced by SPD,” Theor. Appl. Mech. Lett. 2, 021002 (2011).CrossRef F. Yuan, P. Jiang, and X. Wu, “Annealing and strain rate effects on the mechanical behavior of ultrafine-grained iron produced by SPD,” Theor. Appl. Mech. Lett. 2, 021002 (2011).CrossRef
6.
go back to reference M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, and T. I. Chashchukhina, “On the thermal stability of the microcrystalline structure in single-phase metallic materials,” Dokl. Phys. 386 (2), 647–650 (2002).CrossRef M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, and T. I. Chashchukhina, “On the thermal stability of the microcrystalline structure in single-phase metallic materials,” Dokl. Phys. 386 (2), 647–650 (2002).CrossRef
7.
go back to reference L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104 (3), 262–273 (2007).CrossRef L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104 (3), 262–273 (2007).CrossRef
8.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef
9.
go back to reference K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef
10.
go back to reference A. Vorhauer and R. Pippan, “On the onset of a steady state in body-centered cubic iron during severe plastic deformation at low homologous temperatures,” Metall. Mater. Trans. A 39, 417–429 (2008).CrossRef A. Vorhauer and R. Pippan, “On the onset of a steady state in body-centered cubic iron during severe plastic deformation at low homologous temperatures,” Metall. Mater. Trans. A 39, 417–429 (2008).CrossRef
11.
go back to reference A. N. Aleshin, A. M. Arsenkin, and S. V. Dobatkin, “Study of grain growth kinetics in submicrocrystalline armco-iron,” Mater. Sci. Forum 550, 465–470 (2007).CrossRef A. N. Aleshin, A. M. Arsenkin, and S. V. Dobatkin, “Study of grain growth kinetics in submicrocrystalline armco-iron,” Mater. Sci. Forum 550, 465–470 (2007).CrossRef
12.
go back to reference S. V. Dobatkin, S. V. Shagalina, O. I. Sleptsov, and N. A. Krasil’nikov, “Effect of the initial state of a low-carbon steel on nanostructure formation during high-pressure torsion at high strains and pressures,” Metally 2006 (5), 445–452 (2006). S. V. Dobatkin, S. V. Shagalina, O. I. Sleptsov, and N. A. Krasil’nikov, “Effect of the initial state of a low-carbon steel on nanostructure formation during high-pressure torsion at high strains and pressures,” Metally 2006 (5), 445–452 (2006).
13.
go back to reference N. Jiang-li, E. Courtois-Manara, L. Kurmanaeva, A. V. Ganeev, R. Z. Valiev, C. Kübel, and Y. Ivanisenko, “Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion,” Mater. Sci. Eng., A 581, 8–15 (2013).CrossRef N. Jiang-li, E. Courtois-Manara, L. Kurmanaeva, A. V. Ganeev, R. Z. Valiev, C. Kübel, and Y. Ivanisenko, “Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion,” Mater. Sci. Eng., A 581, 8–15 (2013).CrossRef
14.
go back to reference J. A. Muñoz, O. F. Higuera, J. A. Benito, Dj. Bradai, T. Khelfa, R. E. Bolmaro, J. A.M., Jr., and J. M. Cabrera, “Analysis of the micro and substructural evolution during severe plastic deformation of ARMCO iron and consequences in mechanical properties,” Mater. Sci. Eng., A 740–741, 108–120 (2019).CrossRef J. A. Muñoz, O. F. Higuera, J. A. Benito, Dj. Bradai, T. Khelfa, R. E. Bolmaro, J. A.M., Jr., and J. M. Cabrera, “Analysis of the micro and substructural evolution during severe plastic deformation of ARMCO iron and consequences in mechanical properties,” Mater. Sci. Eng., A 740741, 108–120 (2019).CrossRef
15.
go back to reference S. V. S. Murty Narayana, S. Torizuka, K. Nagai, N. Koseki, and Y. Kogo, “Classification of microstructural evolution during large strain high Z deformation of a 0.15 carbon steel,” Scr. Mater. 52, 713–718 (2005).CrossRef S. V. S. Murty Narayana, S. Torizuka, K. Nagai, N. Koseki, and Y. Kogo, “Classification of microstructural evolution during large strain high Z deformation of a 0.15 carbon steel,” Scr. Mater. 52, 713–718 (2005).CrossRef
16.
go back to reference M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019).CrossRef M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019).CrossRef
17.
go back to reference H. H. Bernardi, H. R. Z. Sandim, K. D. Zilnyk, B. Verlinden, and D. Raabe, “Microstructural stability of a niobium single crystal deformed by equal channel angular pressing,” Mater. Res. 20, 1238–1247 (2017).CrossRef H. H. Bernardi, H. R. Z. Sandim, K. D. Zilnyk, B. Verlinden, and D. Raabe, “Microstructural stability of a niobium single crystal deformed by equal channel angular pressing,” Mater. Res. 20, 1238–1247 (2017).CrossRef
18.
go back to reference F. J. Humphreys, “Review grain and subgrain characterisation by electron backscatter diffraction,” J. Mater. Sci. 36, 3833–3854 (2001).CrossRef F. J. Humphreys, “Review grain and subgrain characterisation by electron backscatter diffraction,” J. Mater. Sci. 36, 3833–3854 (2001).CrossRef
19.
go back to reference C. Moussa, M. Bernacki, R. Besnard, and N. Bozzolo, “About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum,” IOP Conf. Ser.: Mater. Sci. Eng. 89, 012038 (2015). C. Moussa, M. Bernacki, R. Besnard, and N. Bozzolo, “About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum,” IOP Conf. Ser.: Mater. Sci. Eng. 89, 012038 (2015).
20.
go back to reference J. Duan, H. Wen, C. Zhou, R. Islamgaliev, and X. Li, “Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe–9Cr alloy,” Materialia 6, 100349 (2019).CrossRef J. Duan, H. Wen, C. Zhou, R. Islamgaliev, and X. Li, “Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe–9Cr alloy,” Materialia 6, 100349 (2019).CrossRef
Metadata
Title
The Growth of a Grain during the Annealing of Iron Deformed at 250°C by Shear under Pressure
Authors
K. E. Shugaev
M. V. Degtyarev
L. M. Voronova
T. I. Chashchukhina
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2260097X

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions