1 Introduction
2 Description of the simulations
Run | Volume |
\(L_{\mathrm{box}}\)
|
\(N_{\mathrm{GAS},\mathrm{DM}}\)
|
\(N_{\mathrm{TRACER}}\)
|
\(m_{\mathrm{baryon}}\)
|
\(m_{\mathrm{DM}}\)
|
\(m_{\mathrm{baryon}}\)
|
\(m_{\mathrm{DM}}\)
|
---|---|---|---|---|---|---|---|---|
[cMpc3] | [cMpc/h] | – | – | [M⊙/h] | [M⊙/h] | [106 M⊙] | [106 M⊙] | |
TNG50-1 |
\( 51.7^{3} \)
| 35 |
\( 2160^{3} \)
| 1 × 21603 | 5.7 × 104 | 3.1 × 105 | 0.08 | 0.45 |
TNG50-2 |
\( 51.7^{3} \)
| 35 |
\( 1080^{3} \)
| 1 × 10803 | 4.6 × 105 | 2.5 × 106 | 0.68 | 3.63 |
TNG50-3 |
\( 51.7^{3} \)
| 35 |
\( 540^{3} \)
| 1 × 5403 | 3.7 × 106 | 2.0 × 107 | 5.4 | 29.0 |
TNG50-4 |
\( 51.7^{3} \)
| 35 |
\( 270^{3} \)
| 1 × 2703 | 2.9 × 107 | 1.6 × 108 | 43.4 | 232 |
TNG100-1 |
\( 106.5^{3} \)
| 75 |
\( 1820^{3} \)
| 2 × 18203 | 9.4 × 105 | 5.1 × 106 | 1.4 | 7.5 |
TNG100-2 |
\( 106.5^{3} \)
| 75 |
\( 910^{3} \)
| 2 × 9103 | 7.6 × 106 | 4.0 × 107 | 11.2 | 59.7 |
TNG100-3 |
\( 106.5^{3} \)
| 75 |
\( 455^{3} \)
| 2 × 4553 | 6.0 × 107 | 3.2 × 108 | 89.2 | 478 |
TNG300-1 |
\( 302.6^{3} \)
| 205 |
\( 2500^{3} \)
| 1 × 25003 | 7.6 × 106 | 4.0 × 107 | 11 | 59 |
TNG300-2 |
\( 302.6^{3} \)
| 205 |
\( 1250^{3} \)
| 1 × 12503 | 5.9 × 107 | 3.2 × 108 | 88 | 470 |
TNG300-3 |
\( 302.6^{3} \)
| 205 |
\( 625^{3} \)
| 1 × 6253 | 4.8 × 108 | 2.5 × 109 | 703 | 3760 |
TNG50-1-Dark |
\( 51.7^{3} \)
| 35 |
\( 2160^{3} \)
| – | – | 3.7 × 105 | – | 0.55 |
TNG50-2-Dark |
\( 51.7^{3} \)
| 35 |
\( 1080^{3} \)
| – | – | 2.9 × 106 | – | 4.31 |
TNG50-3-Dark |
\( 51.7^{3} \)
| 35 |
\( 540^{3} \)
| – | – | 2.3 × 107 | – | 34.5 |
TNG50-4-Dark |
\( 51.7^{3} \)
| 35 |
\( 270^{3} \)
| – | – | 1.9 × 108 | – | 275 |
TNG100-1-Dark |
\( 106.5^{3} \)
| 75 |
\( 1820^{3} \)
| – | – | 6.0 × 106 | – | 8.9 |
TNG100-2-Dark |
\( 106.5^{3} \)
| 75 |
\( 910^{3} \)
| – | – | 4.8 × 107 | – | 70.1 |
TNG100-3-Dark |
\( 106.5^{3} \)
| 75 |
\( 455^{3} \)
| – | – | 3.8 × 108 | – | 567 |
TNG300-1-Dark |
\( 302.6^{3} \)
| 205 |
\( 2500^{3} \)
| – | – | 7.0 × 107 | – | 47 |
TNG300-2-Dark |
\( 302.6^{3} \)
| 205 |
\( 1250^{3} \)
| – | – | 3.8 × 108 | – | 588 |
TNG300-3-Dark |
\( 302.6^{3} \)
| 205 |
\( 625^{3} \)
| – | – | 3.0 × 109 | – | 4470 |
Run |
\(\epsilon_{\mathrm{DM},\star}^{z=0}\)
|
\(\epsilon_{\mathrm{DM},\star}\)
|
\(\epsilon_{\mathrm{gas},\min }\)
|
\(r_{\mathrm{cell},\min }\)
|
\(\bar{r}_{\mathrm{cell}}\)
|
\(\bar{r}_{\mathrm{cell},\mathrm{SF}}\)
|
\(\bar{n}_{\mathrm{H},\mathrm{SF}}\)
|
\(n_{\mathrm{H},\max}\)
|
---|---|---|---|---|---|---|---|---|
[kpc] | [ckpc/h] | [ckpc/h] | [pc] | [kpc] | [pc] | [cm−3] | [cm−3] | |
TNG50-1 | 0.29 | 0.39 → 0.195 | 0.05 | 8 | 5.8 | 138 | 0.8 | 650 |
TNG50-2 | 0.58 | 0.78 → 0.39 | 0.1 | 19 | 12.9 | 282 | 0.7 | 620 |
TNG50-3 | 1.15 | 1.56 → 0.78 | 0.2 | 65 | 25.0 | 562 | 0.6 | 80 |
TNG50-4 | 2.30 | 3.12 → 1.56 | 0.4 | 170 | 50.1 | 1080 | 0.5 | 35 |
TNG100-1 | 0.74 | 1.0 → 0.5 | 0.125 | 14 | 15.8 | 355 | 1.0 | 3040 |
TNG100-2 | 1.48 | 2.0 → 1.0 | 0.25 | 74 | 31.2 | 720 | 0.6 | 185 |
TNG100-3 | 2.95 | 4.0 → 2.0 | 0.5 | 260 | 63.8 | 1410 | 0.5 | 30 |
TNG300-1 | 1.48 | 2.0 → 1.0 | 0.25 | 47 | 31.2 | 715 | 0.6 | 490 |
TNG300-2 | 2.95 | 4.0 → 2.0 | 0.5 | 120 | 63.8 | 1420 | 0.5 | 235 |
TNG300-3 | 5.90 | 8.0 → 4.0 | 1.0 | 519 | 153 | 3070 | 0.4 | 30 |
2.1 Physical models and numerical methods
Simulation Aspect | Illustris | TNG (50/100/300) |
---|---|---|
Magnetic Fields | no | ideal MHD (Pakmor et al. 2011) |
BH Low-State Feedback | ‘Radio’ Bubbles | BH-driven wind (kinetic kick) |
BH Accretion | Boosted Bondi-Hoyle (α = 100) | Un-boosted Bondi-Hoyle |
BH Seed mass | 105 M⊙/h | 8 × 105 M⊙/h |
Winds (Directionality) | bi-polar (\(\vec{v}_{\mathrm{gas}} \times\nabla \phi _{\mathrm{grav}}\)) | isotropic |
Winds (Thermal Content) | cold | warm (10%) |
Winds (Velocity) |
\(\propto\sigma_{\mathrm{DM}}\)
| + scaling with H(z), and \(v_{\min}\) |
Winds (Energy) | constant per unit SFR | + metallicity dependence in η |
Stellar Evolution | Illustris Yields | TNG Yields |
Metals Tagging | – | SNIa, SNII, AGB, NSNS, FeSNIa, FeSNII |
Shock Finder | no | yes (Schaal and Springel 2015) |
2.2 Model validation and early findings
2.3 Breadth of simulated data
3 Data products
3.1 Snapshots
3.1.1 Snapshot organization
Snap |
a
|
z
| Snap |
a
|
z
|
---|---|---|---|---|---|
2 | 0.0769 | 12 | 33 | 0.3333 | 2 |
3 | 0.0833 | 11 | 40 | 0.4 | 1.5 |
4 | 0.0909 | 10 | 50 | 0.5 | 1 |
6 | 0.1 | 9 | 59 | 0.5882 | 0.7 |
8 | 0.1111 | 8 | 67 | 0.6667 | 0.5 |
11 | 0.125 | 7 | 72 | 0.7143 | 0.4 |
13 | 0.1429 | 6 | 78 | 0.7692 | 0.3 |
17 | 0.1667 | 5 | 84 | 0.8333 | 0.2 |
21 | 0.2 | 4 | 91 | 0.9091 | 0.1 |
25 | 0.25 | 3 | 99 | 1 | 0 |
3.1.2 Snapshot contents
-
PartType0—GAS
-
PartType1—DM
-
PartType2—(unused)
-
PartType3—TRACERS
-
PartType4—STARS & WIND PARTICLES
-
PartType5—BLACK HOLES
3.1.3 Tagged metals
-
SNIa (0): The total metals ejected by Type Ia SN.
-
SNII (1): The total metals ejected by Type II SN.
-
AGB (2): the total metals ejected by stellar winds, which is dominated by AGB stars.
-
NSNS (3): the total mass ejected from NS-NS merger events, which are modeled stochastically (i.e. no fractional events) with a DTD scheme similar to that used for SNIa, except with a different τ value. Note that the units of NSNS are arbitrary. To obtain physical values in units of solar masses, this field must be multiplied by \(\alpha/ \alpha_{0}\) where α is the desired mass ejected per NS-NS merger event, and \(\alpha_{0}\) is the base value (arbitrary) used in the simulation, e.g. Shen et al. (2015) take \(\alpha= 0.05 \mathrm{M}_{\odot }\). The value of \(\alpha_{0}\) varies by run, and it is 0.05 for all TNG100 runs, and 5000.0 for all TNG300 and TNG50 runs. See Naiman et al. (2018) for more details.
-
FeSNIa (4): The total iron ejected by Type Ia SN.
-
FeSNII (5): The total iron ejected by Type II SN.
3.1.4 Subboxes
Subbox | Environment | Center Position [Code Units] | Box Size | \(f_{\mathrm{vol}}\) [%] |
---|---|---|---|---|
TNG100 Subbox-0 | Crowded, including a 5 × 1013 M⊙ halo | (9000, 17,000, 63,000) | 7.5 cMpc/h | 0.1 |
TNG100 Subbox-1 | Less crowded, including several >1012 M⊙ halos | (37,000, 43,500, 67,500) | 7.5 cMpc/h | 0.1 |
TNG300 Subbox-0 | Massive cluster (∼2 × 1015 M⊙) merging at z = 0 | (44, 49, 148) * 1000 | 15 cMpc/h | 0.04 |
TNG300 Subbox-1 | Crowded, above average # of halos above 1013 M⊙ | (20, 175, 15) * 1000 | 15 cMpc/h | 0.04 |
TNG300 Subbox-2 | Semi-underdense, one local group analog at z = 0 | (169, 97.9, 138) * 1000 | 10 cMpc/h | 0.01 |
TNG50 Subbox-0 | Somewhat-crowded (∼6 MWs) | (26,000, 10,000, 26,500) | 4.0 cMpc/h | 0.15 |
TNG50 Subbox-1 | Low-density, many dwarfs, no halos >5 × 1010 M⊙ | (12,500, 10,000, 22,500) | 4.0 cMpc/h | 0.15 |
TNG50 Subbox-2 | Most massive cluster (2 × 1014 M⊙ at z = 0) | (7300, 24,500, 21,500) | 5.0 cMpc/h | 0.3 |
Run |
\(N_{\mathrm{snap}}\)
|
\(\Delta t_{(z=6)}\)
|
\(\Delta t_{(z=2)}\)
|
\(\Delta t_{(z=0)}\)
|
---|---|---|---|---|
TNG100-3 | 2431 | ∼4 Myr | ∼7 Myr | ∼19 Myr |
TNG100-2 | 4380 | ∼2 Myr | ∼4 Myr | ∼10 Myr |
TNG100-1 | 7908 | ∼1 Myr | ∼1.5 Myr | ∼2.5 Myr |
TNG300-3 | 2050 | ∼6 Myr | ∼11 Myr | ∼8 Myr |
TNG300-2 | 3045 | ∼3 Myr | ∼6 Myr | ∼4 Myr |
TNG300-1 | 2449 | ∼1.5 Myr | ∼4 Myr | ∼6 Myr |
TNG50-4 | 2333 | ∼7 Myr | ∼6 Myr | ∼8 Myr |
TNG50-3 | 4006 | ∼2 Myr | ∼3 Myr | ∼4 Myr |
TNG50-2 | 1895 | ∼3 Myr | ∼6 Myr | ∼8 Myr |
TNG50-1 | ∼3600 | ∼3 Myr | ∼2 Myr | ∼2 Myr |
3.2 Group catalogs
3.3 Merger trees
3.3.1 SubLink
3.3.2 LHaloTree
3.3.3 Offsets files
3.3.4 The ‘simulation.hdf5’ file
3.4 Initial conditions
3.5 Supplementary data catalogs
4 Data access
4.1 Direct file download and example scripts
4.2 Web-based API
-
Search across subhalos with numeric range(s) over any field(s) present in the Subfind catalogs.
-
Retrieve a snapshot cutout for all the particles/cells within a given subhalo/halo, optionally restricted to a subset of specified particle/cell type(s) and fields(s).
-
Retrieve the complete merger history or main branches for a given subhalo.
-
Download subsets of snapshot files, containing only specified particle/cell type(s), and/or specific field(s) for each type.
-
Traverse links between halos and subhalos, for instance from a satellite galaxy, to its parent FoF halo, to the primary (central) subhalo of that group, as well as merger tree progenitor/descendant connections.
-
Render visualizations of any field(s) of different components (e.g. dark matter, gas, stars) of a particular halo/subhalo.4
-
Download actual data from such a halo/subhalo visualization, e.g. maps of projected gas density, O VI column density, or stellar luminosity in a given band.[d]
-
Render a static visualization of the complete merger tree (assembly history) of any subhalo.[d]
-
Plot the relationship between quantities in the group catalogs, e.g. fundamental scaling relations such as the star-forming main sequence of TNG.[d]
-
Plot tertiary relationships between group catalog quantities, e.g. the dependence of gas fraction on offset from the main sequence.[d]