Skip to main content
Top

2024 | OriginalPaper | Chapter

The Impact of Green Finance Investments on Carbon Emissions Reduction: A Finding of High-Performance Stocks in the S&P Global Clean Energy Index Using Machine Learning with Bayesian Additive Regression Trees

Authors : Terdthiti Chitkasame, Pathairat Pastpipatkul

Published in: Applications of Optimal Transport to Economics and Related Topics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to verify the effectiveness of carbon emissions reduction through investments in Green finance, focusing on the S&P Global Clean Energy Index as a representative of the global Green finance sector. Specifically, the research identifies constituent stocks within this index that hold the potential to serve as prototypes for carbon emissions reduction initiatives. Utilizing monthly data for 99 stocks, the S&P Global Clean Energy Index, and industrial carbon emissions, this study employs the BART machine model, a novel approach combining Bayesian additive regression trees (BART) and machine learning. The findings of the study reveal a significant relationship between the log prices of AVANGRID Inc.’s stocks and carbon emissions. Notably, as the log prices of these stocks increase, carbon emissions demonstrate a corresponding increase. This effect is particularly pronounced when their price ranges from 44.70 to 46.99 US dollars. This suggests a substantial impact of AVANGRID Inc.’s stock prices on the rise in carbon emissions. Furthermore, the company's significant investments in cutting-edge technology to boost grid capacity in New York for renewable energy adoption in 2023 may result in short-term cost increases, potentially impacting profits, and investor outlook. However, these initiatives are expected to yield long-term environmental benefits and sustainable returns, positively influencing both the company's stock price and shareholder value in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bleich, J., Kapelner, A., Jensen, S., George, E.: Variable selection inference for bayesian additive regression trees. ArXiv e-prints (2013) Bleich, J., Kapelner, A., Jensen, S., George, E.: Variable selection inference for bayesian additive regression trees. ArXiv e-prints (2013)
2.
go back to reference Bleich, J., Kapelner, A., Jensen, S., George, E.: Variable selection for BART: an application to gene regulation.“. Ann. Appl. Stat. 8(3), 1750–1781 (2014)CrossRef Bleich, J., Kapelner, A., Jensen, S., George, E.: Variable selection for BART: an application to gene regulation.“. Ann. Appl. Stat. 8(3), 1750–1781 (2014)CrossRef
3.
go back to reference Breiman, L.: Statistical Modeling: The Two Cultures.“ Statistical Science, 16(3), 199–231 (2001) Breiman, L.: Statistical Modeling: The Two Cultures.“ Statistical Science, 16(3), 199–231 (2001)
4.
go back to reference Chen, X., Chen, Z.: Can Green Finance Development Reduce Carbon Emissions? Empirical Evidence from 30 Chinese Provinces (2021) Chen, X., Chen, Z.: Can Green Finance Development Reduce Carbon Emissions? Empirical Evidence from 30 Chinese Provinces (2021)
5.
6.
go back to reference Dutta, A., Bouri, E., Noor, M.H.: Return and volatility linkages between CO2 emission and clean energy stock prices. Energy 164, 803–810 (2018)CrossRef Dutta, A., Bouri, E., Noor, M.H.: Return and volatility linkages between CO2 emission and clean energy stock prices. Energy 164, 803–810 (2018)CrossRef
7.
go back to reference Ferreira, P., Loures, L.C.: An econophysics study of the S&P global clean energy index. Sustainability 12(2), 662 (2020)CrossRef Ferreira, P., Loures, L.C.: An econophysics study of the S&P global clean energy index. Sustainability 12(2), 662 (2020)CrossRef
8.
go back to reference Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2002) Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2002)
9.
go back to reference Gelman, A.: Parameterization and Bayesian modeling. J. Am. Stat. Assoc. 99(466), 537–545 (2004)CrossRef Gelman, A.: Parameterization and Bayesian modeling. J. Am. Stat. Assoc. 99(466), 537–545 (2004)CrossRef
10.
go back to reference Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)CrossRef Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)CrossRef
11.
go back to reference Gibson, R., Krueger, P.: The sustainability footprint of institutional investors. Paper 571 (2018) Gibson, R., Krueger, P.: The sustainability footprint of institutional investors. Paper 571 (2018)
12.
go back to reference Hammoudeh, S., Ajmi, A.N., Mokni, K.: Relationship between green bonds and financial and environmental variables: a novel time-varying causality. Energy Econ. 92, 104941 (2020)CrossRef Hammoudeh, S., Ajmi, A.N., Mokni, K.: Relationship between green bonds and financial and environmental variables: a novel time-varying causality. Energy Econ. 92, 104941 (2020)CrossRef
13.
go back to reference Hastie, T., Tibshirani, R.: Bayesian backfitting. Stat. Sci. 15(3), 196–213 (2000) Hastie, T., Tibshirani, R.: Bayesian backfitting. Stat. Sci. 15(3), 196–213 (2000)
14.
go back to reference Hastings, W.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57(1), 97–109 (1970)CrossRef Hastings, W.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57(1), 97–109 (1970)CrossRef
15.
go back to reference Lu, W., Zhu, N., Zhang, J.: The Impact of Carbon Disclosure on Financial Performance Under Low Carbon Constraints (2021) Lu, W., Zhu, N., Zhang, J.: The Impact of Carbon Disclosure on Financial Performance Under Low Carbon Constraints (2021)
16.
go back to reference Kanamura, T.: A model of price correlations between clean energy indices and energy commodities. J. Sustain. Financ. Invest. 12(2), 319–359 (2022); Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis, 2nd ed. Chapman & Hall/CRC (2004) Kanamura, T.: A model of price correlations between clean energy indices and energy commodities. J. Sustain. Financ. Invest. 12(2), 319–359 (2022); Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis, 2nd ed. Chapman & Hall/CRC (2004)
17.
18.
go back to reference Ma, G., Liang, M., Sun, W.: Effect Analysis of Carbon Information on Enterprise Value Based on Big Data (2022) Ma, G., Liang, M., Sun, W.: Effect Analysis of Carbon Information on Enterprise Value Based on Big Data (2022)
19.
go back to reference Martin, V.: Green finance: regulation and instruments. J. Central Bank. Theory Practice 12(2), 185–209 (2023)CrossRef Martin, V.: Green finance: regulation and instruments. J. Central Bank. Theory Practice 12(2), 185–209 (2023)CrossRef
20.
go back to reference Pratola, M., Chipman, H., Higdon, D., McCulloch, R., Rust, W.: Parallel Bayesian Additive Regression Trees. Technical report, University of Chicago (2013) Pratola, M., Chipman, H., Higdon, D., McCulloch, R., Rust, W.: Parallel Bayesian Additive Regression Trees. Technical report, University of Chicago (2013)
21.
go back to reference Risal, N., Joshi, S.: Measuring Green Banking Practices on Bank’s Environmental Performance: Empirical Evidence from Kathmandu Valley (2018) Risal, N., Joshi, S.: Measuring Green Banking Practices on Bank’s Environmental Performance: Empirical Evidence from Kathmandu Valley (2018)
22.
go back to reference Surya, B., Muhibuddin, A., Suriani, S., Rasyidi, ES., Baharuddin, B., Fitriyah, AT., Abubakar, H.: Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia (2021) Surya, B., Muhibuddin, A., Suriani, S., Rasyidi, ES., Baharuddin, B., Fitriyah, AT., Abubakar, H.: Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia (2021)
23.
go back to reference Taddy, M., Gramacy, R., Polson, N.: Dynamic trees for learning and design. J. Am. Stat. Assoc. 106(493), 109–123 (2011) Taddy, M., Gramacy, R., Polson, N.: Dynamic trees for learning and design. J. Am. Stat. Assoc. 106(493), 109–123 (2011)
25.
go back to reference Wegener, M., Amin, G.R.: Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. Appl. 122, 369–375 (2019)CrossRef Wegener, M., Amin, G.R.: Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. Appl. 122, 369–375 (2019)CrossRef
26.
go back to reference Zhang, J., Ke, H.: The Moderating Effect and Threshold Effect of Green Finance on Carbon Intensity: From the Perspective of Capital Accumulation (2022) Zhang, J., Ke, H.: The Moderating Effect and Threshold Effect of Green Finance on Carbon Intensity: From the Perspective of Capital Accumulation (2022)
27.
go back to reference Zhang, R., Xu, H., Zhang, Z., Lyu, Y., Lu, Y., Duan, H.: Whether Green Finance Improves Green Innovation of Listed Companies—Evidence from China (2022) Zhang, R., Xu, H., Zhang, Z., Lyu, Y., Lu, Y., Duan, H.: Whether Green Finance Improves Green Innovation of Listed Companies—Evidence from China (2022)
Metadata
Title
The Impact of Green Finance Investments on Carbon Emissions Reduction: A Finding of High-Performance Stocks in the S&P Global Clean Energy Index Using Machine Learning with Bayesian Additive Regression Trees
Authors
Terdthiti Chitkasame
Pathairat Pastpipatkul
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_39