Skip to main content
Top
Published in:

14-06-2023

The impact of SnMnO2 TCO and Cu2O as a hole transport layer on CIGSSe solar cell performance improvement

Authors: Raushan Kumar, Akhilesh Kumar, Ravi Pushkar, Alok Priyadarshi

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, two experimental CIGSSe thin-film solar cells (TFSCs) are simulated and demonstrate high efficiency of 20 and 22.92%. The photovoltaic results of both devices are then validated based on the experiential optoelectronic values. After the simulation, a compelling result is confirmed for both the experimental and simulated solar cells. Finally, various designs are proposed. The proposed Type-1 solar cell is designed by the addition of low resistivity, wide energy bandgap (Eg), and minimum absorption coefficient (α) based tin-doped manganese oxide (Sn1−xMnxO2) material in a conventional solar cell instead of ZnO:B and ZnMgO:Al transparent conducting oxide (TCO) layers. Further, by matching the band energy alignment and adjusting the thickness and doping concentration of the TCO, buffer, and absorber layers, the efficiency of the proposed Type1 TFSC has been increased from 20 to 27.75%. The proposed Type-1 solar cell has some drawbacks, such as the inability to appropriately suppress the photogenerated minority carrier recombination losses due to the absence of a hole transport layer (HTL), and the external quantum efficiency (EQE) is lower than that of the conventional solar cell. Furthermore, wide band energy and a high α based on cuprous oxide (Cu2O) as an HTL are added between the absorber and the back ohmic contact layers in the proposed Type-1 solar cell. Then the structure becomes a Type-2 TFSC. The Type-2 TFSC absorbs more blue light, instantly suppressing the recombination losses and enhancing power conversion efficiency (PCE) (η = 29.01%) and EQE (97%).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barman, B., Kalita, P.K.: Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Sol. Energy 216, 329–337 (2021)CrossRef Barman, B., Kalita, P.K.: Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Sol. Energy 216, 329–337 (2021)CrossRef
2.
go back to reference Patel, A.K., Mishra, R., Soni, S.K.: Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer. Micro Nanostruct. 165, 207195 (2022)CrossRef Patel, A.K., Mishra, R., Soni, S.K.: Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer. Micro Nanostruct. 165, 207195 (2022)CrossRef
3.
go back to reference Moujoud, S., Hartiti, B., Touhtouh, S., Fadili, S., Faddouli, A., Belhora, F., Hajjaji, A.: Efficiency enhancement by simulation method of copper antimony disulfide thin film based solar cells. Mater. Today Commun. 31, 103415 (2022)CrossRef Moujoud, S., Hartiti, B., Touhtouh, S., Fadili, S., Faddouli, A., Belhora, F., Hajjaji, A.: Efficiency enhancement by simulation method of copper antimony disulfide thin film based solar cells. Mater. Today Commun. 31, 103415 (2022)CrossRef
4.
go back to reference Sara, B., Baya, Z., Zineb, B.: Investigation of Cu (In, Ga) Se2 solar cell performance with non-cadmium buffer layer using TCAD-SILVACO. Mater. Sci. Pol 36(3), 514–519 (2018)CrossRef Sara, B., Baya, Z., Zineb, B.: Investigation of Cu (In, Ga) Se2 solar cell performance with non-cadmium buffer layer using TCAD-SILVACO. Mater. Sci. Pol 36(3), 514–519 (2018)CrossRef
5.
go back to reference Biplab, S.R.I., Ali, M.H., Moon, M.M.A., Pervez, M.F., Rahman, M.F., Hossain, J.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 19, 342–352 (2020)CrossRef Biplab, S.R.I., Ali, M.H., Moon, M.M.A., Pervez, M.F., Rahman, M.F., Hossain, J.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 19, 342–352 (2020)CrossRef
6.
go back to reference Ould Saad Hamady, S.: Solis: a modular, portable, and high-performance 1D semiconductor device simulator. J. Comput. Electron. 19(2), 640–647 (2020)CrossRef Ould Saad Hamady, S.: Solis: a modular, portable, and high-performance 1D semiconductor device simulator. J. Comput. Electron. 19(2), 640–647 (2020)CrossRef
7.
go back to reference Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: An efficient and deterministic photon management using deep subwavelength features. Nano Energy 70, 104521 (2020)CrossRef Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: An efficient and deterministic photon management using deep subwavelength features. Nano Energy 70, 104521 (2020)CrossRef
8.
go back to reference Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures. Nano Energy 70, 104553 (2020)CrossRef Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures. Nano Energy 70, 104553 (2020)CrossRef
9.
go back to reference Marko, G., Prajapati, A., Shalev, G.: Subwavelength nonimaging light concentrators for the harvesting of the solar radiation. Nano Energy 61, 275–283 (2019)CrossRef Marko, G., Prajapati, A., Shalev, G.: Subwavelength nonimaging light concentrators for the harvesting of the solar radiation. Nano Energy 61, 275–283 (2019)CrossRef
10.
go back to reference Prajapati, A., Nissan, Y., Gabay, T., Shalev, G.: Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy 54, 447–452 (2018)CrossRef Prajapati, A., Nissan, Y., Gabay, T., Shalev, G.: Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy 54, 447–452 (2018)CrossRef
11.
go back to reference Mohottige, R.N., Vithanage, S.P.K.: Numerical simulation of a new device architecture for CIGS-based thin-film solar cells using 1D-SCAPS simulator. J. Photochem. Photobiol. A 407, 113079 (2021)CrossRef Mohottige, R.N., Vithanage, S.P.K.: Numerical simulation of a new device architecture for CIGS-based thin-film solar cells using 1D-SCAPS simulator. J. Photochem. Photobiol. A 407, 113079 (2021)CrossRef
12.
go back to reference Alqahtani, S.M., Baloch, A.A., Ahmed, S.S., Alharbi, F.H.: Dilute oxygen alloys of ZnS as a promising toxic-free buffer layer for Cu (In, Ga)Se2 thin-film solar cells. IEEE Trans. Electron Dev. 67(4), 1666–1673 (2020)CrossRef Alqahtani, S.M., Baloch, A.A., Ahmed, S.S., Alharbi, F.H.: Dilute oxygen alloys of ZnS as a promising toxic-free buffer layer for Cu (In, Ga)Se2 thin-film solar cells. IEEE Trans. Electron Dev. 67(4), 1666–1673 (2020)CrossRef
13.
go back to reference Yan, L., Bai, Y., Yang, B., Chen, N., Tan, Z.A., Hayat, T., Alsaedi, A.: Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band. Curr. Appl. Phys. 18(4), 484–490 (2018)CrossRef Yan, L., Bai, Y., Yang, B., Chen, N., Tan, Z.A., Hayat, T., Alsaedi, A.: Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band. Curr. Appl. Phys. 18(4), 484–490 (2018)CrossRef
14.
go back to reference Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9(6), 1863–1867 (2019)CrossRef Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9(6), 1863–1867 (2019)CrossRef
15.
go back to reference Bouabdelli, M.W., Rogti, F., Maache, M., Rabehi, A.: Performance enhancement of CIGS thin-film solar cell. Optik 216, 164948 (2020)CrossRef Bouabdelli, M.W., Rogti, F., Maache, M., Rabehi, A.: Performance enhancement of CIGS thin-film solar cell. Optik 216, 164948 (2020)CrossRef
16.
go back to reference Nishimura, T., Chantana, J., Mavlonov, A., Kawano, Y., Masuda, T., Minemoto, T.: Device design for high-performance bifacial Cu (In, Ga) Se2 solar cells under front and rear illuminations. Sol. Energy 218, 76–84 (2021)CrossRef Nishimura, T., Chantana, J., Mavlonov, A., Kawano, Y., Masuda, T., Minemoto, T.: Device design for high-performance bifacial Cu (In, Ga) Se2 solar cells under front and rear illuminations. Sol. Energy 218, 76–84 (2021)CrossRef
17.
go back to reference Yuan, Z.K., Chen, S., Xie, Y., Park, J.S., Xiang, H., Gong, X.G., Wei, S.H.: Na-diffusion enhanced p-type conductivity in Cu (In, Ga) Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6(24), 1601191 (2016)CrossRef Yuan, Z.K., Chen, S., Xie, Y., Park, J.S., Xiang, H., Gong, X.G., Wei, S.H.: Na-diffusion enhanced p-type conductivity in Cu (In, Ga) Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6(24), 1601191 (2016)CrossRef
18.
go back to reference Berenguier, B., Barreau, N., Jaffré, A., Ory, D., Guillemoles, J.F., Kleider, J.P., Lombez, L.: Defects characterization in thin films photovoltaics materials by correlated high-frequency modulated and time resolved photoluminescence: An application to Cu (In, Ga) Se2. Thin Solid Films 669, 520–524 (2019)CrossRef Berenguier, B., Barreau, N., Jaffré, A., Ory, D., Guillemoles, J.F., Kleider, J.P., Lombez, L.: Defects characterization in thin films photovoltaics materials by correlated high-frequency modulated and time resolved photoluminescence: An application to Cu (In, Ga) Se2. Thin Solid Films 669, 520–524 (2019)CrossRef
19.
go back to reference Moon, S.H., Park, S.J., Hwang, Y.J., Lee, D.K., Cho, Y., Kim, D.W., Min, B.K.: Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci. Rep. 4(1), 1–6 (2014)CrossRef Moon, S.H., Park, S.J., Hwang, Y.J., Lee, D.K., Cho, Y., Kim, D.W., Min, B.K.: Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci. Rep. 4(1), 1–6 (2014)CrossRef
20.
go back to reference Luo, H., Zhang, Y., Li, H.: Effect of MoS2 interlayer on performances of copper-barium-tin-sulfur thin film solar cells via theoretical simulation. Sol. Energy 223, 384–397 (2021)CrossRef Luo, H., Zhang, Y., Li, H.: Effect of MoS2 interlayer on performances of copper-barium-tin-sulfur thin film solar cells via theoretical simulation. Sol. Energy 223, 384–397 (2021)CrossRef
21.
go back to reference Dinakaran, S., Meher, S.R., Swarnavalli, G.C.J.: One-dimensional modeling for an investigation into parameter optimization, crossover and red-kink behavior of ZnMgO buffer layer Cd-free Cu (In, Ga) Se2 solar cell. Appl. Phys. A 125, 1–15 (2019)CrossRef Dinakaran, S., Meher, S.R., Swarnavalli, G.C.J.: One-dimensional modeling for an investigation into parameter optimization, crossover and red-kink behavior of ZnMgO buffer layer Cd-free Cu (In, Ga) Se2 solar cell. Appl. Phys. A 125, 1–15 (2019)CrossRef
22.
go back to reference Sharbati, S., Gharibshahian, I., Orouji, A.A.: Designing of AlxGa1−xAs/CIGS tandem solar cell by analytical model. Sol. Energy 188, 1–9 (2019)CrossRef Sharbati, S., Gharibshahian, I., Orouji, A.A.: Designing of AlxGa1−xAs/CIGS tandem solar cell by analytical model. Sol. Energy 188, 1–9 (2019)CrossRef
23.
go back to reference Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)CrossRef Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)CrossRef
24.
go back to reference Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Karg, F.: Determination of the band gap depth profile of the penternary Cu (In (1−X) Ga X)(SY Se (1− Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96(7), 3857–3860 (2004)CrossRef Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Karg, F.: Determination of the band gap depth profile of the penternary Cu (In (1−X) Ga X)(SY Se (1− Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96(7), 3857–3860 (2004)CrossRef
25.
go back to reference Shih, Y.T., Tsai, Y.C., Lin, D.Y.: Synthesis and characterization of CuIn1−xGaxSe2 semiconductor nanocrystals. Nanomaterials 10(10), 2066 (2020)CrossRef Shih, Y.T., Tsai, Y.C., Lin, D.Y.: Synthesis and characterization of CuIn1−xGaxSe2 semiconductor nanocrystals. Nanomaterials 10(10), 2066 (2020)CrossRef
26.
go back to reference Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E.: Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells. Optik 223, 165541 (2020)CrossRef Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E.: Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells. Optik 223, 165541 (2020)CrossRef
27.
go back to reference Asaduzzaman, M., Hasan, M., Bahar, A.N.: An investigation into the effects of band gap and doping concentration on Cu (In, Ga) Se2 solar cell efficiency. Springer Plus 5(1), 1–8 (2016)CrossRef Asaduzzaman, M., Hasan, M., Bahar, A.N.: An investigation into the effects of band gap and doping concentration on Cu (In, Ga) Se2 solar cell efficiency. Springer Plus 5(1), 1–8 (2016)CrossRef
28.
go back to reference Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Thin-film Cu (In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)CrossRef Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Thin-film Cu (In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)CrossRef
29.
go back to reference Chantana, J., Kato, T., Sugimoto, S., Minemoto, T.: 20% efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/ Cu(In, Ga)(S, Se)2 solar cell prepared by all-dry process through a combination of heat-light-soaking and light-soaking processes. ACS Appl. Mater. Interfaces 10(13), 11361–11368 (2018)CrossRef Chantana, J., Kato, T., Sugimoto, S., Minemoto, T.: 20% efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/ Cu(In, Ga)(S, Se)2 solar cell prepared by all-dry process through a combination of heat-light-soaking and light-soaking processes. ACS Appl. Mater. Interfaces 10(13), 11361–11368 (2018)CrossRef
31.
go back to reference Kato, T., Wu, J.L., Hirai, Y., Sugimoto, H., Bermudez, V.: Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2. IEEE J. Photovolt. 9(1), 325–330 (2018)CrossRef Kato, T., Wu, J.L., Hirai, Y., Sugimoto, H., Bermudez, V.: Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2. IEEE J. Photovolt. 9(1), 325–330 (2018)CrossRef
32.
go back to reference Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Benedicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu (In, Ga) Se–ZnS. J. King Saud Univ. Sci. 31(4), 1404–1413 (2019)CrossRef Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Benedicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu (In, Ga) Se–ZnS. J. King Saud Univ. Sci. 31(4), 1404–1413 (2019)CrossRef
33.
go back to reference Sobayel, K., Shahinuzzaman, M., Amin, N., Karim, M.R., Dar, M.A., Gul, R., Akhtaruzzaman, M.: Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol. Energy 207, 479–485 (2020)CrossRef Sobayel, K., Shahinuzzaman, M., Amin, N., Karim, M.R., Dar, M.A., Gul, R., Akhtaruzzaman, M.: Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol. Energy 207, 479–485 (2020)CrossRef
34.
go back to reference Priya, A., Singh, S.N.: Enhancement of efficiency and external quantum efficiency of CIGSSe solar cell by replacement and inserting buffer and Cu2O ER-HTL layer. Superlatt Microstruct. 152, 106840 (2021)CrossRef Priya, A., Singh, S.N.: Enhancement of efficiency and external quantum efficiency of CIGSSe solar cell by replacement and inserting buffer and Cu2O ER-HTL layer. Superlatt Microstruct. 152, 106840 (2021)CrossRef
35.
go back to reference Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)CrossRef Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)CrossRef
36.
go back to reference Kumar, V., Singh, R.G., Purohit, L.P., Mehra, R.M.: Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J. Mater. Sci. Technol. 27(6), 481–488 (2011)CrossRef Kumar, V., Singh, R.G., Purohit, L.P., Mehra, R.M.: Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J. Mater. Sci. Technol. 27(6), 481–488 (2011)CrossRef
37.
go back to reference Chantana, J., Kawano, Y., Nishimura, T., Kato, T., Sugimoto, H., Minemoto, T.: Characterisation of Cd-Free Zn1–xMgxO:Al/Zn1–x MgxO/Cu (In, Ga)(S, Se)2 solar cells fabricated by an all dry process using ultraviolet light excited time-resolved photoluminescence. ACS Appl. Mater. Interfaces. 11(7), 7539–7545 (2019)CrossRef Chantana, J., Kawano, Y., Nishimura, T., Kato, T., Sugimoto, H., Minemoto, T.: Characterisation of Cd-Free Zn1–xMgxO:Al/Zn1–x MgxO/Cu (In, Ga)(S, Se)2 solar cells fabricated by an all dry process using ultraviolet light excited time-resolved photoluminescence. ACS Appl. Mater. Interfaces. 11(7), 7539–7545 (2019)CrossRef
38.
go back to reference Ganose, A.M., Scanlon, D.O.: Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Material Chemistry C 4(7), 1467–1475 (2016)CrossRef Ganose, A.M., Scanlon, D.O.: Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Material Chemistry C 4(7), 1467–1475 (2016)CrossRef
39.
go back to reference Brahma, R., Krishna, M.G., Bhatnagar, A.K.: Optical, structural and electrical properties of Mn doped tin oxide thin films. Bull Mater Sci. 29(3), 317–322 (2006)CrossRef Brahma, R., Krishna, M.G., Bhatnagar, A.K.: Optical, structural and electrical properties of Mn doped tin oxide thin films. Bull Mater Sci. 29(3), 317–322 (2006)CrossRef
40.
go back to reference Chen, X.G., Li, W.W., Wu, J.D., Sun, J., Jiang, K., Hu, Z.G., Chu, J.H.: Temperature dependence of electronic band transition in Mn-doped SnO2 nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra. Mater. Res. Bull. 47(1), 111–116 (2012)CrossRef Chen, X.G., Li, W.W., Wu, J.D., Sun, J., Jiang, K., Hu, Z.G., Chu, J.H.: Temperature dependence of electronic band transition in Mn-doped SnO2 nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra. Mater. Res. Bull. 47(1), 111–116 (2012)CrossRef
41.
go back to reference Arora, I., Malhotra, K., Mahajan, A., Kumar, P.: Structural, optical and electrical characterization of spin coated SnO2: Mn thin films. Mater. Today Proc. 36, 697–700 (2021)CrossRef Arora, I., Malhotra, K., Mahajan, A., Kumar, P.: Structural, optical and electrical characterization of spin coated SnO2: Mn thin films. Mater. Today Proc. 36, 697–700 (2021)CrossRef
42.
go back to reference Azam, A., Ahmed, A.S., Habib, S.S., Naqvi, A.H.: Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloy. Compd. 523, 83–87 (2012)CrossRef Azam, A., Ahmed, A.S., Habib, S.S., Naqvi, A.H.: Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloy. Compd. 523, 83–87 (2012)CrossRef
43.
go back to reference Ahmad, N., Khan, S., Ansari, M.M.N.: Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44(13), 15972–15980 (2018)CrossRef Ahmad, N., Khan, S., Ansari, M.M.N.: Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44(13), 15972–15980 (2018)CrossRef
44.
go back to reference Lekshmy, S.N.S., Anitha, V.S.N., Thomas, P.V., Joy, K.: Magnetic properties of Mn-doped SnO2 thin films prepared by the sol-gel dip coating method for dilute magnetic semiconductors. J. Am. Ceram. Soc. 10(97), 3184–3191 (2014)CrossRef Lekshmy, S.N.S., Anitha, V.S.N., Thomas, P.V., Joy, K.: Magnetic properties of Mn-doped SnO2 thin films prepared by the sol-gel dip coating method for dilute magnetic semiconductors. J. Am. Ceram. Soc. 10(97), 3184–3191 (2014)CrossRef
45.
go back to reference Gandhi, T.I., Babu, R.R., Ramamurthi, K., Arivanandhan, M.: Effect of Mn doping on the electrical and optical properties of SnO2 thin films deposited by chemical spray pyrolysis technique. Thin Solid Films 598, 195–203 (2016)CrossRef Gandhi, T.I., Babu, R.R., Ramamurthi, K., Arivanandhan, M.: Effect of Mn doping on the electrical and optical properties of SnO2 thin films deposited by chemical spray pyrolysis technique. Thin Solid Films 598, 195–203 (2016)CrossRef
46.
go back to reference Iivonen, T., Heikkilä, M.J., Popov, G., Nieminen, H.E., Kaipio, M., Kemell, M., Leskelä, M.: Atomic layer deposition of photoconductive Cu2O thin films. ACS Omega 4(6), 11205–11214 (2019)CrossRef Iivonen, T., Heikkilä, M.J., Popov, G., Nieminen, H.E., Kaipio, M., Kemell, M., Leskelä, M.: Atomic layer deposition of photoconductive Cu2O thin films. ACS Omega 4(6), 11205–11214 (2019)CrossRef
47.
go back to reference Rafea, M.A., Roushdy, N.: Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys 42(1), 015413 (2009)CrossRef Rafea, M.A., Roushdy, N.: Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys 42(1), 015413 (2009)CrossRef
48.
go back to reference Malerba, C., Biccari, F., Ricardo, C.L.A., D’Incau, M., Scardi, P., Mittiga, A.: Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 95(10), 2848–2854 (2011)CrossRef Malerba, C., Biccari, F., Ricardo, C.L.A., D’Incau, M., Scardi, P., Mittiga, A.: Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 95(10), 2848–2854 (2011)CrossRef
49.
go back to reference Kevin, M., Ong, W.L., Lee, G.H., Ho, G.W.: Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011)CrossRef Kevin, M., Ong, W.L., Lee, G.H., Ho, G.W.: Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011)CrossRef
50.
go back to reference Varache, R., Leendertz, C., Gueunier-Farret, M.E., Haschke, J., Muñoz, D., Korte, L.: Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Mater. Solar Cells 141, 14–23 (2015)CrossRef Varache, R., Leendertz, C., Gueunier-Farret, M.E., Haschke, J., Muñoz, D., Korte, L.: Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Mater. Solar Cells 141, 14–23 (2015)CrossRef
51.
go back to reference Anand, N., Kale, P.: Optimisation of TOPCon structured solar cell using AFORS-HET. Trans. Electr. Electron. Mater. 22(2), 160–166 (2020)CrossRef Anand, N., Kale, P.: Optimisation of TOPCon structured solar cell using AFORS-HET. Trans. Electr. Electron. Mater. 22(2), 160–166 (2020)CrossRef
52.
go back to reference Borah, C.K., Tyagi, P.K., Kumar, S.: The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2(8), 3231–3243 (2020)CrossRef Borah, C.K., Tyagi, P.K., Kumar, S.: The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2(8), 3231–3243 (2020)CrossRef
53.
go back to reference Mohanta, S.K., Nakamura, A., Temmyo, J.: Nitrogen and copper doping in MgxZn1−xO films and their impact on p-type conductivity. J. Appl. Phys. 110(1), 013524 (2011)CrossRef Mohanta, S.K., Nakamura, A., Temmyo, J.: Nitrogen and copper doping in MgxZn1−xO films and their impact on p-type conductivity. J. Appl. Phys. 110(1), 013524 (2011)CrossRef
54.
go back to reference Trunk, M., Venkatachalapathy, V., Galeckas, A., Kuznetsov, A.Y.: Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 97(21), 211901 (2010)CrossRef Trunk, M., Venkatachalapathy, V., Galeckas, A., Kuznetsov, A.Y.: Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 97(21), 211901 (2010)CrossRef
56.
go back to reference Nardone, M., Patikirige, Y., Walkons, C., Bansal, S., Friedlmeier, T.M., Kweon, K.E., Lordi, V.: Baseline models for three types of CIGS cells: effects of buffer layer and Na content. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC pp. 3013–3018, https://doi.org/10.1109/PVSC.2018.8548167 Nardone, M., Patikirige, Y., Walkons, C., Bansal, S., Friedlmeier, T.M., Kweon, K.E., Lordi, V.: Baseline models for three types of CIGS cells: effects of buffer layer and Na content. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC pp. 3013–3018, https://​doi.​org/​10.​1109/​PVSC.​2018.​8548167
57.
go back to reference Stokes, A., Al-Jassim, M., Norman, A., Diercks, D., Gorman, B.: Nanoscale insight into the p-n junction of alkali-incorporated Cu (In, Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 25(9), 764–772 (2017)CrossRef Stokes, A., Al-Jassim, M., Norman, A., Diercks, D., Gorman, B.: Nanoscale insight into the p-n junction of alkali-incorporated Cu (In, Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 25(9), 764–772 (2017)CrossRef
58.
go back to reference Schnohr, C.S., Kämmer, H., Stephan, C., Schorr, S., Steinbach, T., Rensberg, J.: Atomic-scale structure and band-gap bowing in Cu (In, Ga) Se2. Phys. Rev. B 85(24), 245204 (2012)CrossRef Schnohr, C.S., Kämmer, H., Stephan, C., Schorr, S., Steinbach, T., Rensberg, J.: Atomic-scale structure and band-gap bowing in Cu (In, Ga) Se2. Phys. Rev. B 85(24), 245204 (2012)CrossRef
59.
go back to reference Kumar, R., Kumar, A.: Performance enhancement of ZnMgO: Al/ZnMgO/CIGSSe solar cell with the combination of CZTGSe HT-ERL layer. J. Electron. Mater. 50(1), 84–103 (2021)CrossRef Kumar, R., Kumar, A.: Performance enhancement of ZnMgO: Al/ZnMgO/CIGSSe solar cell with the combination of CZTGSe HT-ERL layer. J. Electron. Mater. 50(1), 84–103 (2021)CrossRef
60.
go back to reference Senol, S.D., Yalcin, B., Ozugurlu, E., Arda, L.: Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater. Res. Exp. 7(1), 015079 (2020)CrossRef Senol, S.D., Yalcin, B., Ozugurlu, E., Arda, L.: Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater. Res. Exp. 7(1), 015079 (2020)CrossRef
61.
go back to reference Larsson, F., Keller, J., Primetzhofer, D., Riekehr, L., Edoff, M., Törndahl, T.: Atomic layer deposition of amorphous tin-gallium oxide films. J. Vac. Sci. Technol. A Vac. Surf. Films 37(3), 030906 (2019)CrossRef Larsson, F., Keller, J., Primetzhofer, D., Riekehr, L., Edoff, M., Törndahl, T.: Atomic layer deposition of amorphous tin-gallium oxide films. J. Vac. Sci. Technol. A Vac. Surf. Films 37(3), 030906 (2019)CrossRef
62.
go back to reference Kumar, A., Kumar, M., Singh, R.P.: Study on electronic, magnetic, optical and thermoelectric properties of manganese oxide (MnO): DFT based spin polarised calculations. Optik 241, 167064 (2021)CrossRef Kumar, A., Kumar, M., Singh, R.P.: Study on electronic, magnetic, optical and thermoelectric properties of manganese oxide (MnO): DFT based spin polarised calculations. Optik 241, 167064 (2021)CrossRef
63.
go back to reference Jrad, A., Nasr, T.B., Ammar, S., Turki-Kamoun, N.: Effect of ZnS, iZnO, dZnO and Cu (In, Ga)Se2 thickness on the performance of simulated Mo/Cu (In, Ga)Se2/ZnS/iZnO/dZnO solar cell. Opt. Quantum Electron. 51(8), 1–10 (2019)CrossRef Jrad, A., Nasr, T.B., Ammar, S., Turki-Kamoun, N.: Effect of ZnS, iZnO, dZnO and Cu (In, Ga)Se2 thickness on the performance of simulated Mo/Cu (In, Ga)Se2/ZnS/iZnO/dZnO solar cell. Opt. Quantum Electron. 51(8), 1–10 (2019)CrossRef
64.
go back to reference Ramírez-Esquivel, O.Y., Mazón-Montijo, D.A., Cabrera-German, D., Martínez-Guerra, E., Montiel-González, Z.: Atomic layer deposition supercycle approach applied to the Al-doping of nearly saturated ZnO surfaces. Ceram. Int. 47(5), 7126–7134 (2021)CrossRef Ramírez-Esquivel, O.Y., Mazón-Montijo, D.A., Cabrera-German, D., Martínez-Guerra, E., Montiel-González, Z.: Atomic layer deposition supercycle approach applied to the Al-doping of nearly saturated ZnO surfaces. Ceram. Int. 47(5), 7126–7134 (2021)CrossRef
65.
go back to reference Othman, Z.J., Matoussi, A.: Morphological and optical studies of zinc oxide doped MgO. J. Alloys Compd. 671, 366–371 (2016)CrossRef Othman, Z.J., Matoussi, A.: Morphological and optical studies of zinc oxide doped MgO. J. Alloys Compd. 671, 366–371 (2016)CrossRef
67.
go back to reference Tang, P., Li, B., Feng, L.: The optical and electrical properties of ZnO: Al thin films deposited at low temperatures by RF magnetron sputtering. Ceram. Int. 44(4), 4154–4157 (2018)CrossRef Tang, P., Li, B., Feng, L.: The optical and electrical properties of ZnO: Al thin films deposited at low temperatures by RF magnetron sputtering. Ceram. Int. 44(4), 4154–4157 (2018)CrossRef
68.
go back to reference Gontijo, L.C., Cunha, A.G., Nascente, P.A.: Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition. Mater. Sci. Engg. B 177(20), 1783–1787 (2012)CrossRef Gontijo, L.C., Cunha, A.G., Nascente, P.A.: Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition. Mater. Sci. Engg. B 177(20), 1783–1787 (2012)CrossRef
69.
go back to reference Wang, H., Zhang, Y., Kou, X.L., Cai, Y.A., Liu, W., Yu, T., Sun, Y.: Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process. Semicond. Sci. Technol. 25(5), 055007 (2010)CrossRef Wang, H., Zhang, Y., Kou, X.L., Cai, Y.A., Liu, W., Yu, T., Sun, Y.: Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process. Semicond. Sci. Technol. 25(5), 055007 (2010)CrossRef
70.
go back to reference Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Aluminum-doped Zn1− xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimising surface carrier recombination. Prog. Photovolt. Res. Appl. 25(12), 996–1004 (2012)CrossRef Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Aluminum-doped Zn1− xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimising surface carrier recombination. Prog. Photovolt. Res. Appl. 25(12), 996–1004 (2012)CrossRef
71.
go back to reference Kim, S., Yoon, H., Kim, S.O., Leem, J.Y.: Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt. Mater. 35(12), 2418–2424 (2013)CrossRef Kim, S., Yoon, H., Kim, S.O., Leem, J.Y.: Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt. Mater. 35(12), 2418–2424 (2013)CrossRef
72.
go back to reference Wen, B., Liu, C.Q., Wang, N., Wang, H.L., Liu, S.M., Ren, Y.H., Chai, W.P.: Properties of transparent conductive boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering from Zn1−xBx O targets. Appl. Phys. A 123(3), 1–8 (2017)CrossRef Wen, B., Liu, C.Q., Wang, N., Wang, H.L., Liu, S.M., Ren, Y.H., Chai, W.P.: Properties of transparent conductive boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering from Zn1−xBx O targets. Appl. Phys. A 123(3), 1–8 (2017)CrossRef
73.
go back to reference Alsaad, A.M., Al-Bataineh, Q.M., Ahmad, A.A., Albataineh, Z., Telfah, A.: Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)CrossRef Alsaad, A.M., Al-Bataineh, Q.M., Ahmad, A.A., Albataineh, Z., Telfah, A.: Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)CrossRef
74.
go back to reference Huang, C.Y., Parashar, P., Chou, H.M., Lin, Y.S., Lin, A.: A path-finding toward high-efficiency penternary Cu (In, Ga)(Se, S)2 thin film solar module. Optik 179, 837–847 (2019)CrossRef Huang, C.Y., Parashar, P., Chou, H.M., Lin, Y.S., Lin, A.: A path-finding toward high-efficiency penternary Cu (In, Ga)(Se, S)2 thin film solar module. Optik 179, 837–847 (2019)CrossRef
75.
go back to reference Mishra, S., Bhargava, K., Deb, D.: Numerical simulation of potential induced degradation (PID) in different thin-film solar cells using SCAPS-1D. Sol. Energy. 188, 353–360 (2019)CrossRef Mishra, S., Bhargava, K., Deb, D.: Numerical simulation of potential induced degradation (PID) in different thin-film solar cells using SCAPS-1D. Sol. Energy. 188, 353–360 (2019)CrossRef
76.
go back to reference Avis, C., Kim, S.H., Kim, K.H., Jang, J., Hong, S.J., Nam, Y.D., Hur, J.H.: B-ion doping effect in ZnO thin-films. J. Korean Phys. Soc. 54(1), 535–538 (2009)CrossRef Avis, C., Kim, S.H., Kim, K.H., Jang, J., Hong, S.J., Nam, Y.D., Hur, J.H.: B-ion doping effect in ZnO thin-films. J. Korean Phys. Soc. 54(1), 535–538 (2009)CrossRef
78.
go back to reference Kulikov, V.D., Yakovlev, V.Y.: Absorption of light by free charge carriers in the crystalline CdS under intense electron irradiation. Russ. Phys. J. 59(5), 744–749 (2016)CrossRef Kulikov, V.D., Yakovlev, V.Y.: Absorption of light by free charge carriers in the crystalline CdS under intense electron irradiation. Russ. Phys. J. 59(5), 744–749 (2016)CrossRef
79.
go back to reference Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (2014)CrossRef Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (2014)CrossRef
80.
go back to reference Karki, S., Paul, P., Rajan, G., Belfore, B., Poudel, D., Rockett, A., Marsillac, S.: Analysis of recombination mechanisms in RbF-treated CIGS solar cells. IEEE J. Photovolt. 9(1), 313–318 (2018)CrossRef Karki, S., Paul, P., Rajan, G., Belfore, B., Poudel, D., Rockett, A., Marsillac, S.: Analysis of recombination mechanisms in RbF-treated CIGS solar cells. IEEE J. Photovolt. 9(1), 313–318 (2018)CrossRef
81.
go back to reference Chantana, J., Kawano, Y., Nishimura, T., Mavlonov, A., Minemoto, T.: Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020)CrossRef Chantana, J., Kawano, Y., Nishimura, T., Mavlonov, A., Minemoto, T.: Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020)CrossRef
83.
go back to reference Heinemann, M., Heiliger, C.: Auger recombination rates in ZnMgO from first principles. J. Apply. Phys. 110(8), 083103 (2011)CrossRef Heinemann, M., Heiliger, C.: Auger recombination rates in ZnMgO from first principles. J. Apply. Phys. 110(8), 083103 (2011)CrossRef
84.
go back to reference Muchahary, D., Maity, S.: High-efficiency thin film ZnMgO/ZnO solar cell simulation approach: Temperature dependency, BSF and efficient small signal analysis. Superlatt. Microstruct. 109, 209–216 (2017)CrossRef Muchahary, D., Maity, S.: High-efficiency thin film ZnMgO/ZnO solar cell simulation approach: Temperature dependency, BSF and efficient small signal analysis. Superlatt. Microstruct. 109, 209–216 (2017)CrossRef
85.
go back to reference Pettersson, J., Platzer-Björkman, C., Zimmermann, U., Edoff, M.: Baseline model of graded-absorber Cu (In, Ga) Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films 519(21), 7476–7480 (2010)CrossRef Pettersson, J., Platzer-Björkman, C., Zimmermann, U., Edoff, M.: Baseline model of graded-absorber Cu (In, Ga) Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films 519(21), 7476–7480 (2010)CrossRef
86.
go back to reference Tsokkou, D., Othonos, A., Zervos, M.: Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 100(13), 133101 (2012)CrossRef Tsokkou, D., Othonos, A., Zervos, M.: Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 100(13), 133101 (2012)CrossRef
87.
go back to reference Chevallier, C., Bose, S., Hamady, S.O.S., Fressengeas, N.: Numerical investigations of the impact of buffer germanium composition and low cost fabrication of Cu2O on AZO/ZnGeO/Cu2O solar cell performances. EPJ Photovolt. 12(3), 3 (2021)CrossRef Chevallier, C., Bose, S., Hamady, S.O.S., Fressengeas, N.: Numerical investigations of the impact of buffer germanium composition and low cost fabrication of Cu2O on AZO/ZnGeO/Cu2O solar cell performances. EPJ Photovolt. 12(3), 3 (2021)CrossRef
88.
go back to reference Zakutayev, A., Stevanovic, V., Lany, S.: Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106(12), 123903 (2015)CrossRef Zakutayev, A., Stevanovic, V., Lany, S.: Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106(12), 123903 (2015)CrossRef
89.
go back to reference Wolfe, J.P., Jang, J.I.: The search for Bose-Einstein condensation of excitons in Cu2O: exciton-auger recombination versus biexciton formation. New J. Phys. 16(12), 123048 (2014)CrossRef Wolfe, J.P., Jang, J.I.: The search for Bose-Einstein condensation of excitons in Cu2O: exciton-auger recombination versus biexciton formation. New J. Phys. 16(12), 123048 (2014)CrossRef
90.
go back to reference Valladares, L.D.L.S., Salinas, D.H., Dominguez, A.B., Najarro, D.A., Khondaker, S.I., Mitrelias, T., Majima, Y.: Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012)CrossRef Valladares, L.D.L.S., Salinas, D.H., Dominguez, A.B., Najarro, D.A., Khondaker, S.I., Mitrelias, T., Majima, Y.: Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012)CrossRef
91.
go back to reference Hssi, A.A., Atourki, L., Labchir, N., Ouafi, M., Abouabassi, K., Elfanaoui, A., Bouabid, K.: Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater. Res. Exp. 7(1), 016424 (2020)CrossRef Hssi, A.A., Atourki, L., Labchir, N., Ouafi, M., Abouabassi, K., Elfanaoui, A., Bouabid, K.: Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater. Res. Exp. 7(1), 016424 (2020)CrossRef
92.
go back to reference Et-taya, L., Ouslimane, T., Benami, A.: Numerical analysis of earth-abundant Cu2ZnSn (SxSe1−x) solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy. 201, 827–835 (2020)CrossRef Et-taya, L., Ouslimane, T., Benami, A.: Numerical analysis of earth-abundant Cu2ZnSn (SxSe1−x) solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy. 201, 827–835 (2020)CrossRef
93.
go back to reference Bouarissa, A., Gueddim, A., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through TCO, buffer and absorber layers optimisation. Mater. Sci. Eng. B 263, 114816 (2021)CrossRef Bouarissa, A., Gueddim, A., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through TCO, buffer and absorber layers optimisation. Mater. Sci. Eng. B 263, 114816 (2021)CrossRef
94.
go back to reference Rahman, M.A.: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy. 215, 64–76 (2021)CrossRef Rahman, M.A.: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy. 215, 64–76 (2021)CrossRef
95.
go back to reference Tripathi, S., Lohia, P., Dwivedi, D.K.: Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Sol. Energy. 204, 748–760 (2020)CrossRef Tripathi, S., Lohia, P., Dwivedi, D.K.: Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Sol. Energy. 204, 748–760 (2020)CrossRef
96.
go back to reference Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu (In, Ga) Se2 based solar cells performances. Opto Electron. Rev. 27(1), 70–78 (2019)CrossRef Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu (In, Ga) Se2 based solar cells performances. Opto Electron. Rev. 27(1), 70–78 (2019)CrossRef
97.
go back to reference Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)CrossRef Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)CrossRef
98.
go back to reference Cetinkaya, S.: Study of electrical effect of transition-metal dichalcogenide-MoS2 layer on the performance characteristic of Cu2ZnSnS4 based solar cells using wxAMPS. Optik 181, 627–638 (2019)CrossRef Cetinkaya, S.: Study of electrical effect of transition-metal dichalcogenide-MoS2 layer on the performance characteristic of Cu2ZnSnS4 based solar cells using wxAMPS. Optik 181, 627–638 (2019)CrossRef
99.
go back to reference Vallisree, S., Thangavel, R., Lenka, T.R.: Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29(9), 7262–7272 (2018)CrossRef Vallisree, S., Thangavel, R., Lenka, T.R.: Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29(9), 7262–7272 (2018)CrossRef
100.
go back to reference Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)CrossRef Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)CrossRef
101.
go back to reference Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)CrossRef Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)CrossRef
102.
go back to reference Gharibshahian, I., Orouji, A.A., Sharbati, S.: Effectiveness of band discontinuities between CIGS absorber and copper-based hole transport layer in limiting recombination at the back contact. Mater. Today Commun. 33, 104220 (2022)CrossRef Gharibshahian, I., Orouji, A.A., Sharbati, S.: Effectiveness of band discontinuities between CIGS absorber and copper-based hole transport layer in limiting recombination at the back contact. Mater. Today Commun. 33, 104220 (2022)CrossRef
103.
go back to reference Mabvuer, F.T., Nya, F.T., Kenfack, G.M.D.: Improving the absorption spectrum and performance of CIGS solar cells by optimizing the stepped band gap profile of the multilayer absorber. Sol. Energy 240, 193–200 (2022)CrossRef Mabvuer, F.T., Nya, F.T., Kenfack, G.M.D.: Improving the absorption spectrum and performance of CIGS solar cells by optimizing the stepped band gap profile of the multilayer absorber. Sol. Energy 240, 193–200 (2022)CrossRef
104.
go back to reference Kumar, R., Kumar, A.: Development of high efficiency Ce1–BMgBO2 buffer and perovskite HTL based CIGSSe thin film solar cell using a simulation approach. Phys. B 653, 414691 (2023)CrossRef Kumar, R., Kumar, A.: Development of high efficiency Ce1–BMgBO2 buffer and perovskite HTL based CIGSSe thin film solar cell using a simulation approach. Phys. B 653, 414691 (2023)CrossRef
Metadata
Title
The impact of SnMnO2 TCO and Cu2O as a hole transport layer on CIGSSe solar cell performance improvement
Authors
Raushan Kumar
Akhilesh Kumar
Ravi Pushkar
Alok Priyadarshi
Publication date
14-06-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02050-8