Skip to main content
Top

2024 | OriginalPaper | Chapter

4. The Indoor Thermal Comfort Indexes PMV and PPD

Author : Kristian Fabbri

Published in: Thermal Comfort Perception

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of the energy exchange between human body and environment (Human Body heat exchange) does not allow you to evaluate the view that people have with respect to comfort. Comfort can be expressed with indices and temperature sensation. This chapter describes the various indexes, in particular the Predicted Mean Vote and the related measurement tools as provided by the regulations. Added to this are considerations on the development of research in the field of comfort that includes the assessment of the social and cultural and tied to the Human Behavior, in particular the Adaptive Thermal Comfort, and the simultaneous evaluation of comfort parameters such as the Indoor Air Quality and the Indoor Environmental Quality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference ASHRAE (1989) ASHRAE handbook fundamentals American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA ASHRAE (1989) ASHRAE handbook fundamentals American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA
go back to reference ASHRAE Standard 55-2014. Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta ASHRAE Standard 55-2014. Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta
go back to reference ASHRAE 62.1-2013. Ventilation for acceptable indoor air quality ASHRAE 62.1-2013. Ventilation for acceptable indoor air quality
go back to reference Auliciemes A (1983) Psychophysical criteria for global thermal zones of building design. Int J Biometerorol 69–86 Auliciemes A (1983) Psychophysical criteria for global thermal zones of building design. Int J Biometerorol 69–86
go back to reference Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96CrossRef Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96CrossRef
go back to reference Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494 Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494
go back to reference Bründl W, Hoppe P (1984) Advantage and disadvantage of the urban heat island. An evaluation according to the hygro-thermic effects. Arch Met Geoph Biocl 35:55–66CrossRef Bründl W, Hoppe P (1984) Advantage and disadvantage of the urban heat island. An evaluation according to the hygro-thermic effects. Arch Met Geoph Biocl 35:55–66CrossRef
go back to reference Buratti C, Ricciardi P (2009) Adaptive analysis of thermal comfort in university classrooms: correlation between experimental data and mathematical models. Build Environ 44:674–687CrossRef Buratti C, Ricciardi P (2009) Adaptive analysis of thermal comfort in university classrooms: correlation between experimental data and mathematical models. Build Environ 44:674–687CrossRef
go back to reference Choi J-H, Loftness V (2012) Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Build Environ 58:258–269CrossRef Choi J-H, Loftness V (2012) Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Build Environ 58:258–269CrossRef
go back to reference Choi J-H, Loftness V, Lee D-W (2012) Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Build Environ 50:165–175CrossRef Choi J-H, Loftness V, Lee D-W (2012) Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Build Environ 50:165–175CrossRef
go back to reference Clarke JF, Bach W (1971) Comparison of the comfort conditions in different urban and suburban microenvironments. Int J Biometeorol 15:41–54CrossRef Clarke JF, Bach W (1971) Comparison of the comfort conditions in different urban and suburban microenvironments. Int J Biometeorol 15:41–54CrossRef
go back to reference COST UTCI (2004) Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. MoU of COST Action 730. www.utci.org COST UTCI (2004) Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. MoU of COST Action 730. www.​utci.​org
go back to reference d’Ambrosio Alfano FR, Olesen BW, Palella BI, Riccio G (2014) Thermal comfort: design and assessment for energy saving. Energy Build 81:326–336 d’Ambrosio Alfano FR, Olesen BW, Palella BI, Riccio G (2014) Thermal comfort: design and assessment for energy saving. Energy Build 81:326–336
go back to reference de Dear RJ, Brager GS (1997) Final report: developing an adaptive model of thermal comfort and preference. ASHRAE RP-884 1997. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta de Dear RJ, Brager GS (1997) Final report: developing an adaptive model of thermal comfort and preference. ASHRAE RP-884 1997. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta
go back to reference de Dear RJ, Brager GS (1998a) Towards an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1):145–167 de Dear RJ, Brager GS (1998a) Towards an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1):145–167
go back to reference de Dear R, Brager GS (1998b) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1a):145–167 de Dear R, Brager GS (1998b) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1a):145–167
go back to reference de Dear R, Brager GS (2011) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108CrossRef de Dear R, Brager GS (2011) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108CrossRef
go back to reference de Dear RJ, Brager GS, Cooper (1997) Developing an adaptive model of thermal comfort and preference. Final report ASHRAE RP-884. ASHRAE Inc., Atlanta de Dear RJ, Brager GS, Cooper (1997) Developing an adaptive model of thermal comfort and preference. Final report ASHRAE RP-884. ASHRAE Inc., Atlanta
go back to reference EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
go back to reference Fanger PO (1970) Thermal comfort-analysis and applications in environmental engineering. Danish Technical Press, Copenhagen Fanger PO (1970) Thermal comfort-analysis and applications in environmental engineering. Danish Technical Press, Copenhagen
go back to reference Ferrari S, Zanotto V (2012) Adaptive comfort: analysis and application of the main indices. Build Environ 49:25–32CrossRef Ferrari S, Zanotto V (2012) Adaptive comfort: analysis and application of the main indices. Build Environ 49:25–32CrossRef
go back to reference Fountain M, Huizenga C (1995) A thermal sensation model for use by the engineering profession: results of cooperative research between the American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc. and Environmental Analytics. Final report Fountain M, Huizenga C (1995) A thermal sensation model for use by the engineering profession: results of cooperative research between the American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc. and Environmental Analytics. Final report
go back to reference Frontczak M, Wargocki P (2011) Literature survey on how different factors influence human comfort in indoor environments. Build Environ 46:922–937CrossRef Frontczak M, Wargocki P (2011) Literature survey on how different factors influence human comfort in indoor environments. Build Environ 46:922–937CrossRef
go back to reference Gagge AP (1946) The linearity criterion as applied to partitional calorimetry. Am J Physiol 116:656–668CrossRef Gagge AP (1946) The linearity criterion as applied to partitional calorimetry. Am J Physiol 116:656–668CrossRef
go back to reference Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a single model of human physiological temperature response. ASHRAE Trans 77:247–262 Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a single model of human physiological temperature response. ASHRAE Trans 77:247–262
go back to reference Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92(2):709–731 Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92(2):709–731
go back to reference Gaoua N, Granham J, Racinais S, El Masioui F (2012) Sensory displeasure reduces complex cognitive performance in the heat. J Environ Psychol 32:158–163 Gaoua N, Granham J, Racinais S, El Masioui F (2012) Sensory displeasure reduces complex cognitive performance in the heat. J Environ Psychol 32:158–163
go back to reference Giles BD, Balafoutis CH, Maheras P (1990) Too hot for comfort: the heatwaves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104CrossRef Giles BD, Balafoutis CH, Maheras P (1990) Too hot for comfort: the heatwaves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104CrossRef
go back to reference Givoni B (1969) Man, climate and architecture. Elsevier Science Ltd, Amsterdam Givoni B (1969) Man, climate and architecture. Elsevier Science Ltd, Amsterdam
go back to reference Goto T, Mitamura T, Yoshino H, Tamura A, Inomata E (2007) Long-term field survey on thermal adaptation in office buildings in Japan. Build Environ 42:3944–3954CrossRef Goto T, Mitamura T, Yoshino H, Tamura A, Inomata E (2007) Long-term field survey on thermal adaptation in office buildings in Japan. Build Environ 42:3944–3954CrossRef
go back to reference Halawa E, van Hoof J (2012) The adaptive approach to thermal comfort: a critical overview (review). Energy Build 51:101–110CrossRef Halawa E, van Hoof J (2012) The adaptive approach to thermal comfort: a critical overview (review). Energy Build 51:101–110CrossRef
go back to reference Haldi F, Robinson D (2010) On the unification of thermal perception and adaptive actions. Build Environ 45(11):2440–2475CrossRef Haldi F, Robinson D (2010) On the unification of thermal perception and adaptive actions. Build Environ 45(11):2440–2475CrossRef
go back to reference Hoppe P (1999) The physiological equivalent temperature PET—an universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:271–275 Hoppe P (1999) The physiological equivalent temperature PET—an universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:271–275
go back to reference Hoppe P, Mayer H (1987) Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landsch Stadt 19:229 Hoppe P, Mayer H (1987) Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landsch Stadt 19:229
go back to reference Houghten FC, Yagloglou CP (1953) Determining lines of equal comfort. Trans Am Soc Heat Vent Eng 29:165–176 Houghten FC, Yagloglou CP (1953) Determining lines of equal comfort. Trans Am Soc Heat Vent Eng 29:165–176
go back to reference Houghton FC, Yaglou CP (1923) Determining equal comfort lines. J Am Soc Heat Vent Eng 29:165–176 Houghton FC, Yaglou CP (1923) Determining equal comfort lines. J Am Soc Heat Vent Eng 29:165–176
go back to reference Humphreys MA (1973) Classroom temperature, clothing and thermal comfort. A study of secondary school children in summertime. J Inst Heat Vent Eng 41:191–202 Humphreys MA (1973) Classroom temperature, clothing and thermal comfort. A study of secondary school children in summertime. J Inst Heat Vent Eng 41:191–202
go back to reference Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004 Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004
go back to reference Humphreys MA, Nicol JF (2000) Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies. ASHRAE Trans 206(2):485–492 Humphreys MA, Nicol JF (2000) Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies. ASHRAE Trans 206(2):485–492
go back to reference Humphreys MA, Nicol JF (2002) The validity of ISO-PMV for predicting comfort votes in every day thermal environments. Energy Build 34:667–684CrossRef Humphreys MA, Nicol JF (2002) The validity of ISO-PMV for predicting comfort votes in every day thermal environments. Energy Build 34:667–684CrossRef
go back to reference ISO 10551 Ergonomics of the thermal environment. Assessment of the influence of the thermal environment using subjective judgement scales ISO 10551 Ergonomics of the thermal environment. Assessment of the influence of the thermal environment using subjective judgement scales
go back to reference ISO 11079 Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects ISO 11079 Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects
go back to reference ISO 11399:1995 Ergonomics of the thermal environment—principles and application of relevant international standards ISO 11399:1995 Ergonomics of the thermal environment—principles and application of relevant international standards
go back to reference ISO 12894 Ergonomics of the thermal environment—medical supervision of individuals exposed to extreme hot or cold environments ISO 12894 Ergonomics of the thermal environment—medical supervision of individuals exposed to extreme hot or cold environments
go back to reference ISO 13731:2001 Ergonomics of the thermal environment—vocabulary and symbols ISO 13731:2001 Ergonomics of the thermal environment—vocabulary and symbols
go back to reference ISO 13792 Thermal performance of buildings—calculation of internal temperatures of a room in summer without mechanical cooling—simplified method ISO 13792 Thermal performance of buildings—calculation of internal temperatures of a room in summer without mechanical cooling—simplified method
go back to reference ISO 15743 Ergonomics of the thermal environment—cold workplaces—risk assessment and management ISO 15743 Ergonomics of the thermal environment—cold workplaces—risk assessment and management
go back to reference ISO 16000-9 Indoor air—part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID ISO 16000-9 Indoor air—part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID
go back to reference ISO 16000-10 Indoor air—part 9: determination of the emission of volatile organic compounds from building products and furnishing—emission test chamber method ISO 16000-10 Indoor air—part 9: determination of the emission of volatile organic compounds from building products and furnishing—emission test chamber method
go back to reference ISO 16000-11 Indoor air—part: 11 determination of the emission of volatile organic compounds from building products and furnishing—sampling, storage of samples and preparation of test specimens ISO 16000-11 Indoor air—part: 11 determination of the emission of volatile organic compounds from building products and furnishing—sampling, storage of samples and preparation of test specimens
go back to reference ISO 16813 Building environment design—indoor environment—general principles ISO 16813 Building environment design—indoor environment—general principles
go back to reference ISO 16814 Building environment design—indoor air quality—methods of expressing the quality of indoor air for human occupancy ISO 16814 Building environment design—indoor air quality—methods of expressing the quality of indoor air for human occupancy
go back to reference ISO 7243 Hot environments—estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature) ISO 7243 Hot environments—estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature)
go back to reference ISO 7726 Thermal environments—instruments and methods for measuring physical quantities ISO 7726 Thermal environments—instruments and methods for measuring physical quantities
go back to reference ISO 7730 Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria ISO 7730 Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
go back to reference ISO 7933 Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain. ISO 7933 Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain.
go back to reference ISO 8996 Ergonomics—determination of metabolic heat production ISO 8996 Ergonomics—determination of metabolic heat production
go back to reference ISO 9886 Evaluation of thermal strain by physiological measurements ISO 9886 Evaluation of thermal strain by physiological measurements
go back to reference ISO 9920 Ergonomics of the thermal environment—estimation of the thermal insulation and evaporative resistance of a clothing ensemble ISO 9920 Ergonomics of the thermal environment—estimation of the thermal insulation and evaporative resistance of a clothing ensemble
go back to reference ISO/TR 11079 Evaluation of cold environments—determination of required clothing insulation (IREQ) ISO/TR 11079 Evaluation of cold environments—determination of required clothing insulation (IREQ)
go back to reference ISO/TS 11415 Ergonomics of the thermal environment—application of international standards to people with special requirements (technical specification) ISO/TS 11415 Ergonomics of the thermal environment—application of international standards to people with special requirements (technical specification)
go back to reference ISO/TS 13732-2 Ergonomics of the thermal environment—methods for the assessment of human responses to contact with surfaces—part 2: human contact with surfaces at moderate temperature ISO/TS 13732-2 Ergonomics of the thermal environment—methods for the assessment of human responses to contact with surfaces—part 2: human contact with surfaces at moderate temperature
go back to reference Jendritzky G, Maarouf A, Staiger H (2001) Looking for a Universal Thermal Climate Index UTCI for outdoor applications. In: Windsor-conference on thermal standards, Windsor, UK, 5–8 Apr 2001 Jendritzky G, Maarouf A, Staiger H (2001) Looking for a Universal Thermal Climate Index UTCI for outdoor applications. In: Windsor-conference on thermal standards, Windsor, UK, 5–8 Apr 2001
go back to reference Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRef Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRef
go back to reference Jin Q, Li X, Duanmu L, Shu H, Sun Y, Ding Q (2012) Predictive model of local and overall thermal sensations for non-uniform environments. Build Environ 51:330–344CrossRef Jin Q, Li X, Duanmu L, Shu H, Sun Y, Ding Q (2012) Predictive model of local and overall thermal sensations for non-uniform environments. Build Environ 51:330–344CrossRef
go back to reference Kyle WJ (1992) Summer and winter patterns of human thermal stress in Hong Kong. In: Kyle WJ, Chang CP (eds) Proceedings of the 2nd international conference on East Asia and Western Pacific meteorology and climate. World Scientific, Singapore-New Jersey-London-Hong Kong, Hong Kong, pp 575–583 Kyle WJ (1992) Summer and winter patterns of human thermal stress in Hong Kong. In: Kyle WJ, Chang CP (eds) Proceedings of the 2nd international conference on East Asia and Western Pacific meteorology and climate. World Scientific, Singapore-New Jersey-London-Hong Kong, Hong Kong, pp 575–583
go back to reference Markham SF (1947) Climate and the energy of nations, Reprint edn. Ams Pr Inc. ISBN-13: 978-0404162146 Markham SF (1947) Climate and the energy of nations, Reprint edn. Ams Pr Inc. ISBN-13: 978-0404162146
go back to reference McCartney KJ, Nicol JF (2002) Developing an adaptive algorithm for Europe. Energy Build 34:623–635CrossRef McCartney KJ, Nicol JF (2002) Developing an adaptive algorithm for Europe. Energy Build 34:623–635CrossRef
go back to reference Monteiro LM, Alucci MP (2008) Outdoor thermal comfort modeling in Sao Paulo, Brazil. In: Proceedings of conference on passive and low energy architecture 2008 Monteiro LM, Alucci MP (2008) Outdoor thermal comfort modeling in Sao Paulo, Brazil. In: Proceedings of conference on passive and low energy architecture 2008
go back to reference Morgan C, de Dear R (2003) Weather, clothing and thermal adaptation to indoor climate. Clim Res 24(3):267–284CrossRef Morgan C, de Dear R (2003) Weather, clothing and thermal adaptation to indoor climate. Clim Res 24(3):267–284CrossRef
go back to reference Nicol JF, Humphreys MA (2004) A stochastic approach to thermal comfort, occupant behavior and energy use in buildings. AHRAE Trans 110(2):554–568 Nicol JF, Humphreys MA (2004) A stochastic approach to thermal comfort, occupant behavior and energy use in buildings. AHRAE Trans 110(2):554–568
go back to reference Nicol F, Humphreys N (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN 15251. Build Environ 45:11–17CrossRef Nicol F, Humphreys N (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN 15251. Build Environ 45:11–17CrossRef
go back to reference Nicol JF, Humphreys M, Roaf S (2002) Adaptive thermal comfort. Principles and practice. Routledge. ISBN: 978-0-415-69159-8 Nicol JF, Humphreys M, Roaf S (2002) Adaptive thermal comfort. Principles and practice. Routledge. ISBN: 978-0-415-69159-8
go back to reference Nicol F, Humphreys M, Roaf S (2012) Adaptive thermal comfort. Principles and practice. Routledge Taylor & Francis Group, New York Nicol F, Humphreys M, Roaf S (2012) Adaptive thermal comfort. Principles and practice. Routledge Taylor & Francis Group, New York
go back to reference Nikolopoulou M (2004) Designing open spaces in the urban environment: a bioclimatic approach. Centre Renewable Energy Sources (CRES) Nikolopoulou M (2004) Designing open spaces in the urban environment: a bioclimatic approach. Centre Renewable Energy Sources (CRES)
go back to reference Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban space: understanding the human parameter. Sol Energy 70(3):227–235CrossRef Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban space: understanding the human parameter. Sol Energy 70(3):227–235CrossRef
go back to reference OECD (2011) Designing for education. Compendium of exemplary educational facilities. Centre for Effective Learning Environments. ISBN: 9789264112292 OECD (2011) Designing for education. Compendium of exemplary educational facilities. Centre for Effective Learning Environments. ISBN: 9789264112292
go back to reference Olesen BW, Parson KC (2002) Introduction of thermal comfort standards and to the proposed new version of EN ISO 7730. Energy Build 34:537–548CrossRef Olesen BW, Parson KC (2002) Introduction of thermal comfort standards and to the proposed new version of EN ISO 7730. Energy Build 34:537–548CrossRef
go back to reference Olgyay V (1963) Design with climate: bioclimatic approach to architectural regionalism. Princeton University Press, Princeton, NJ Olgyay V (1963) Design with climate: bioclimatic approach to architectural regionalism. Princeton University Press, Princeton, NJ
go back to reference Park P, Tuller SE, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc Urban Plan 125:146–155CrossRef Park P, Tuller SE, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc Urban Plan 125:146–155CrossRef
go back to reference Sanderter M, Hensen JLM, Loomans MGLC, Boerstra AC (2011) Adaptive thermal comfort in primary school classrooms: creating and validating PMV-based comfort charts. Build Environ 46:2454–2461 Sanderter M, Hensen JLM, Loomans MGLC, Boerstra AC (2011) Adaptive thermal comfort in primary school classrooms: creating and validating PMV-based comfort charts. Build Environ 46:2454–2461
go back to reference Saro O, De Angelis A, Feruglio B (2006) Numerical evaluation of local radiant asymmetry. In: 8th international conference and exhibition on healthy buildings—HB 2006, pp 161–166 Saro O, De Angelis A, Feruglio B (2006) Numerical evaluation of local radiant asymmetry. In: 8th international conference and exhibition on healthy buildings—HB 2006, pp 161–166
go back to reference Schellen L, Loomans MGLC, de Wit MH, Olesen BW, van Marken Lichtenbelt WD (2012) The influence of local effects on thermal sensation under non-uniform environmental conditions—gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling. Physiol Behav 107(2):252–261 Schellen L, Loomans MGLC, de Wit MH, Olesen BW, van Marken Lichtenbelt WD (2012) The influence of local effects on thermal sensation under non-uniform environmental conditions—gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling. Physiol Behav 107(2):252–261
go back to reference Schellen L, Loomans MGLC, Kingma BRM, de Wit MH, Frijns AJH, van Marken Lichtenbelt WD (2013) The use of a thermophysiological model in the built environment to predict thermal sensation: coupling with the indoor environment and thermal sensation. Build Environ 59:10–22 Schellen L, Loomans MGLC, Kingma BRM, de Wit MH, Frijns AJH, van Marken Lichtenbelt WD (2013) The use of a thermophysiological model in the built environment to predict thermal sensation: coupling with the indoor environment and thermal sensation. Build Environ 59:10–22
go back to reference Sourbron M, Helsen L (2011) Evaluation of adaptive thermal comfort models in moderate climates and their impact on energy use in office buildings. Energy Build 43:423–432CrossRef Sourbron M, Helsen L (2011) Evaluation of adaptive thermal comfort models in moderate climates and their impact on energy use in office buildings. Energy Build 43:423–432CrossRef
go back to reference Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behavior in an urban park in Goteborg, Sweden. Int J Biometeorol 48:149–156CrossRef Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behavior in an urban park in Goteborg, Sweden. Int J Biometeorol 48:149–156CrossRef
go back to reference Toftum J, Andersen RV, Jensen KL (2009) Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions. Build Environ 44:2009–2016CrossRef Toftum J, Andersen RV, Jensen KL (2009) Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions. Build Environ 44:2009–2016CrossRef
go back to reference van der Linden AC, Boerstra AC, Raue AK, Kurvers SR, de Dear R (2006) Adaptive temperature limits: a new guideline in The Netherlands: a new approach for the assessment of building performance with respect to thermal indoor climate. Energy Build 38:8–17CrossRef van der Linden AC, Boerstra AC, Raue AK, Kurvers SR, de Dear R (2006) Adaptive temperature limits: a new guideline in The Netherlands: a new approach for the assessment of building performance with respect to thermal indoor climate. Energy Build 38:8–17CrossRef
go back to reference Yao Y, Lian Z, Liu W, Shen Q (2008) Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol Behav 93(1–2):310–321CrossRef Yao Y, Lian Z, Liu W, Shen Q (2008) Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol Behav 93(1–2):310–321CrossRef
go back to reference Ying BA, Kwok YL, Li Y, Yeung CY, Li FZ, Li S (2004) Mathematical modeling of thermal physiological responses of clothed infants. J Therm Biol 29(7–8):559–565. In: International thermal physiology symposium: physiology and pharmacology of temperature regulation Ying BA, Kwok YL, Li Y, Yeung CY, Li FZ, Li S (2004) Mathematical modeling of thermal physiological responses of clothed infants. J Therm Biol 29(7–8):559–565. In: International thermal physiology symposium: physiology and pharmacology of temperature regulation
Metadata
Title
The Indoor Thermal Comfort Indexes PMV and PPD
Author
Kristian Fabbri
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52610-7_4