Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2022

21-05-2022

The Influence of Carbon/Glass/Epoxy Hybrid Interfacial Adhesion on the Mode II Delamination Fracture Toughness

Authors: F. M. Monticeli, H. L. Ornaghi Jr, M. O. H. Cioffi, H. J. C. Voorwald

Published in: Mechanics of Composite Materials | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The incorporation of two different reinforcements in the same matrix introduces distinct physical, mechanical, and chemical characteristics into it, which need to be evaluated. In addition, the interfacial adhesion also plays a significant role in the mechanical delamination performance. This study aims to analyze the carbon/glass/ epoxy hybrid interfacial adhesion behavior through a DMA analysis and the mode II delamination toughness regarding the application possibilities of hybrid composites. Hybrid composites feature a strong interface adhesion and a high hindrance of the motion molecular chain, which is caused by the chemical adhesion of glass/carbon/epoxy through the organosilane promotors of glass fibers. The inhomogeneous load distribution, combined with the restricted molecular motion and synergetic combination of reinforcement stiffness, induces a change in crack propagation (a tortuous path) which is characteristic of a high interfacial adhesion. Hybrid interfaces also improve the mechanical behavior of laminates in shear, tending to increase the strain energy release ratio for mode II delamination, compared with that of non-hybrid laminates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Swolfs, L. Gorbatikh, and I. Verpoest, “Fibre hybridisation in polymer composites: A review,” Compos. Part A, Appl. Sci. Manuf., 67, No. 1, 181-200 (2014).CrossRef Y. Swolfs, L. Gorbatikh, and I. Verpoest, “Fibre hybridisation in polymer composites: A review,” Compos. Part A, Appl. Sci. Manuf., 67, No. 1, 181-200 (2014).CrossRef
2.
go back to reference J. Zhang, K. Chaisombat, S. He, and C. H. Wang, “Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures,” Mater. Des., 36, No. 1, 75-80 (2012).CrossRef J. Zhang, K. Chaisombat, S. He, and C. H. Wang, “Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures,” Mater. Des., 36, No. 1, 75-80 (2012).CrossRef
3.
go back to reference A. Vasudevan, S. Senthil Kumaran, K. Naresh, and R. Velmurugan, “Layer-wise damage prediction in carbon/Kevlar/Sglass/ E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography,” Int. J. Crashworthiness., 1, No. 1, 1-15 (2019). A. Vasudevan, S. Senthil Kumaran, K. Naresh, and R. Velmurugan, “Layer-wise damage prediction in carbon/Kevlar/Sglass/ E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography,” Int. J. Crashworthiness., 1, No. 1, 1-15 (2019).
4.
go back to reference K. S. Pandya, C. Veerraju, and N. K. Naik, “Hybrid composites made of carbon and glass woven fabrics under quasistatic loading,” Mater. Des., 32, No. 1, 4094-4099 (2011).CrossRef K. S. Pandya, C. Veerraju, and N. K. Naik, “Hybrid composites made of carbon and glass woven fabrics under quasistatic loading,” Mater. Des., 32, No. 1, 4094-4099 (2011).CrossRef
5.
go back to reference F. M. Monticeli, H. L. Ornaghi, H. J. C. Voorwald, and M. O. H. Cioffi, “Three-dimensional porosity characterization in carbon/glass fiber epoxy hybrid composites,” Compos. Part A Appl. Sci. Manuf., 125, No. 1, 105555 (2019). F. M. Monticeli, H. L. Ornaghi, H. J. C. Voorwald, and M. O. H. Cioffi, “Three-dimensional porosity characterization in carbon/glass fiber epoxy hybrid composites,” Compos. Part A Appl. Sci. Manuf., 125, No. 1, 105555 (2019).
6.
go back to reference T. Brocks, M. Y. Shiino, M. Odila, H. Cioffi, H. Jacobus, C. Voorwald, and A. C. Filho, “Experimental RTM manufacturing analysis of carbon / epoxy composites for aerospace application: Non-crimp and woven fabric differences,” Mater. Res., 16, No. 1, 1175-1182 (2013).CrossRef T. Brocks, M. Y. Shiino, M. Odila, H. Cioffi, H. Jacobus, C. Voorwald, and A. C. Filho, “Experimental RTM manufacturing analysis of carbon / epoxy composites for aerospace application: Non-crimp and woven fabric differences,” Mater. Res., 16, No. 1, 1175-1182 (2013).CrossRef
7.
go back to reference S. R. Montoro, M. Y. Shiino, T. G. Da Cruz, M. O. H. Cioffi, and H. J. C. Voorwald, “Influence of voids on the flexural resistance of the NCF/RTM6 composites,” Procedia Eng., 10, No. 1, 3220-3225 (2011).CrossRef S. R. Montoro, M. Y. Shiino, T. G. Da Cruz, M. O. H. Cioffi, and H. J. C. Voorwald, “Influence of voids on the flexural resistance of the NCF/RTM6 composites,” Procedia Eng., 10, No. 1, 3220-3225 (2011).CrossRef
8.
go back to reference F. M. Monticeli, D. Daou, P. Pekovic, A. Simovic, H. J. C. Voorwald, and M. O. H. Cioffi, “FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation,” Compos. Commun., 22, No. 1, 100532 (2020). F. M. Monticeli, D. Daou, P. Pekovic, A. Simovic, H. J. C. Voorwald, and M. O. H. Cioffi, “FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation,” Compos. Commun., 22, No. 1, 100532 (2020).
9.
go back to reference M. H. Ikbal, A. Ahmed, W. Qingtao, Z. Shuai, and L. Wei, “Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading,” J. Ind. Text., 46, No. 1, 1511-1535 (2017).CrossRef M. H. Ikbal, A. Ahmed, W. Qingtao, Z. Shuai, and L. Wei, “Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading,” J. Ind. Text., 46, No. 1, 1511-1535 (2017).CrossRef
10.
go back to reference W. Wu, Q. Wang, A. Ichenihi, Y. Shen, and W. Li, “The effects of hybridization on the flexural performances of carbon/glass interlayer and intralayer composites,” Polymers (Basel), 10, No. 1, 549 (2018). W. Wu, Q. Wang, A. Ichenihi, Y. Shen, and W. Li, “The effects of hybridization on the flexural performances of carbon/glass interlayer and intralayer composites,” Polymers (Basel), 10, No. 1, 549 (2018).
11.
go back to reference O. F. El-Menshawy, A. R. El-Sissy, M. S. El-Wazery, and R. A. Elsad, “Electrical and mechanical performance of hybrid and non-hybrid composites,” Int. J. Eng., 32, No. 1, 580-586 (2019). O. F. El-Menshawy, A. R. El-Sissy, M. S. El-Wazery, and R. A. Elsad, “Electrical and mechanical performance of hybrid and non-hybrid composites,” Int. J. Eng., 32, No. 1, 580-586 (2019).
12.
go back to reference G. Belingardi and M. P. Cavatorta, “Bending fatigue stiffness and strength degradation in carbon-glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens,” Int. J. Fatigue, 28, No. 1, 815-825 (2006).CrossRef G. Belingardi and M. P. Cavatorta, “Bending fatigue stiffness and strength degradation in carbon-glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens,” Int. J. Fatigue, 28, No. 1, 815-825 (2006).CrossRef
13.
go back to reference G. M. Cândido, M. C. Rezende, M. V. Donadon, and S. F. M. De Almeida, “Fractografia de compósito estrutural aeronáutico submetido à caracterização de tenacidade à fratura interlaminar em modo I,” Polímeros, 22, No. 1, 41-53 (2012).CrossRef G. M. Cândido, M. C. Rezende, M. V. Donadon, and S. F. M. De Almeida, “Fractografia de compósito estrutural aeronáutico submetido à caracterização de tenacidade à fratura interlaminar em modo I,” Polímeros, 22, No. 1, 41-53 (2012).CrossRef
14.
go back to reference Z. Zhang, H. Xu, Y. Liao, Z. Su, and Y. Xiao, “Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints,” Compos. Struct., 176, No. 1, 505-515 (2017).CrossRef Z. Zhang, H. Xu, Y. Liao, Z. Su, and Y. Xiao, “Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints,” Compos. Struct., 176, No. 1, 505-515 (2017).CrossRef
15.
go back to reference M. Y. Shiino, R. C. Alderliesten, M. V. Donadon, and M. O. H. Cioffi, “A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: Evaluation of empirical relations,” Int. J. Fatigue, 84, No. 1, 97-103 (2016).CrossRef M. Y. Shiino, R. C. Alderliesten, M. V. Donadon, and M. O. H. Cioffi, “A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: Evaluation of empirical relations,” Int. J. Fatigue, 84, No. 1, 97-103 (2016).CrossRef
16.
go back to reference M. Y. Shiino, R. C. Alderliesten, M. V. Donadon, H. J. C. Voorwald, and M. O. H. Cioffi, “Applicability of standard delamination tests (double cantilever beam and end notch flexure) for 5HS fabric-reinforced composites in weftdominated surface,” J. Compos. Mater., 49, No. 1, 2557-2565 (2015).CrossRef M. Y. Shiino, R. C. Alderliesten, M. V. Donadon, H. J. C. Voorwald, and M. O. H. Cioffi, “Applicability of standard delamination tests (double cantilever beam and end notch flexure) for 5HS fabric-reinforced composites in weftdominated surface,” J. Compos. Mater., 49, No. 1, 2557-2565 (2015).CrossRef
17.
go back to reference A. Puck and H. Schu, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Comp. Science and Tech.,62, No. 1, 1633-1662 (2002).CrossRef A. Puck and H. Schu, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Comp. Science and Tech.,62, No. 1, 1633-1662 (2002).CrossRef
18.
go back to reference R. Khan, R. Alderliesten, S. Badshah, and R. Benedictus, “Effect of stress ratio or mean stress on fatigue delamination growth in composites: Critical review,” Compos. Struct., 124, No. 1, 214-227 (2015).CrossRef R. Khan, R. Alderliesten, S. Badshah, and R. Benedictus, “Effect of stress ratio or mean stress on fatigue delamination growth in composites: Critical review,” Compos. Struct., 124, No. 1, 214-227 (2015).CrossRef
19.
go back to reference R. C. Alderliesten, “How proper similitude can improve our understanding of crack closure and plasticity in fatigue,” Int. J. Fatigue, 82, No. 1, 263-273 (2016).CrossRef R. C. Alderliesten, “How proper similitude can improve our understanding of crack closure and plasticity in fatigue,” Int. J. Fatigue, 82, No. 1, 263-273 (2016).CrossRef
20.
go back to reference J. A. Pascoe, R. C. Alderliesten, and R. Benedictus, “Methods for the prediction of fatigue delamination growth in composites and adhesive bonds - A critical review,” Eng. Fract. Mech., 112-113, No. 1, 72-96 (2013). J. A. Pascoe, R. C. Alderliesten, and R. Benedictus, “Methods for the prediction of fatigue delamination growth in composites and adhesive bonds - A critical review,” Eng. Fract. Mech., 112-113, No. 1, 72-96 (2013).
21.
go back to reference A. J. José Humberto S., O.J. Heitor L., L. Natália P., B. Bernardo P., and A. Sandro C., “Creep and interfacial behavior of carbon fiber reinforced epoxy filament wound laminates,” Polym. Compos., 39, No. 1, E2199-E2206 (2018). A. J. José Humberto S., O.J. Heitor L., L. Natália P., B. Bernardo P., and A. Sandro C., “Creep and interfacial behavior of carbon fiber reinforced epoxy filament wound laminates,” Polym. Compos., 39, No. 1, E2199-E2206 (2018).
22.
go back to reference H. L. Ornaghi, A. J. Zattera, and A. Sandro C., “Dynamic mechanical properties and correlation with dynamic fragility of sisal reinforced composites,” Polym. Compos., pc.22925, No. 1, 161-166 (2015). H. L. Ornaghi, A. J. Zattera, and A. Sandro C., “Dynamic mechanical properties and correlation with dynamic fragility of sisal reinforced composites,” Polym. Compos., pc.22925, No. 1, 161-166 (2015).
23.
go back to reference H. L. Ornaghi, M. Poletto, and F. G. Ornaghi, “Correlations between dynamic fragility, activation energy and glasstransition temperature in polymeric composite materials: An overview from literature,” Mater. Sci. Adv. Compos. Mater., 2, No. 1, 1-16 (2018). H. L. Ornaghi, M. Poletto, and F. G. Ornaghi, “Correlations between dynamic fragility, activation energy and glasstransition temperature in polymeric composite materials: An overview from literature,” Mater. Sci. Adv. Compos. Mater., 2, No. 1, 1-16 (2018).
24.
go back to reference D. Fink, C. Seidel, J. Hausmann, and T. Rief, “Creep-induced screw preload loss of carbon-fiber sheet molding compound at elevated temperature,” Materials, 12, No. 21, 1-14 (2019). D. Fink, C. Seidel, J. Hausmann, and T. Rief, “Creep-induced screw preload loss of carbon-fiber sheet molding compound at elevated temperature,” Materials, 12, No. 21, 1-14 (2019).
25.
go back to reference Z. Daneshjoo, M. M. Shokrieh, and M. Fakoor, “A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects,” Theor. Appl. Fract. Mech., 94, No. 1, 46-56 (2018).CrossRef Z. Daneshjoo, M. M. Shokrieh, and M. Fakoor, “A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects,” Theor. Appl. Fract. Mech., 94, No. 1, 46-56 (2018).CrossRef
26.
go back to reference Z. Daneshjoo, M.M. Shokrieh, M. Fakoor, R. Alderliesten, and D. Zarouchas, “Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading,” Eng. Fract. Mech., 211, No. 1, 82-98 (2019).CrossRef Z. Daneshjoo, M.M. Shokrieh, M. Fakoor, R. Alderliesten, and D. Zarouchas, “Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading,” Eng. Fract. Mech., 211, No. 1, 82-98 (2019).CrossRef
27.
go back to reference N. Alif, L. A. Carlsson, and L. Boogh, “The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites,” Compos. Part B, Eng., 29, No. 1, 603-611 (1998).CrossRef N. Alif, L. A. Carlsson, and L. Boogh, “The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites,” Compos. Part B, Eng., 29, No. 1, 603-611 (1998).CrossRef
28.
go back to reference Y. Gong, B. Zhang, and S. R. Hallett, “Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading,” Compos. Struct., 189, No. 1, 160-176 (2018).CrossRef Y. Gong, B. Zhang, and S. R. Hallett, “Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading,” Compos. Struct., 189, No. 1, 160-176 (2018).CrossRef
29.
go back to reference S. H. Yoon and C. S. Hong, “Modified end notched flexure specimen for mixed mode interlaminar fracture in laminated composites,” Int. J. Fract., 43, No. 1, 3-9 (1990).CrossRef S. H. Yoon and C. S. Hong, “Modified end notched flexure specimen for mixed mode interlaminar fracture in laminated composites,” Int. J. Fract., 43, No. 1, 3-9 (1990).CrossRef
30.
go back to reference R. Gerlach, C. R. Siviour, J. Wiegand, and N. Petrinic, “In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading,” Compos. Sci. Technol., 72, No. 1, 397-411 (2012).CrossRef R. Gerlach, C. R. Siviour, J. Wiegand, and N. Petrinic, “In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading,” Compos. Sci. Technol., 72, No. 1, 397-411 (2012).CrossRef
31.
go back to reference T. Brocks, M. O. H. Cioffi, and H. J. C. Voorwald, “Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites,” Appl. Surf. Sci., 274, No. 1, 210-216 (2013).CrossRef T. Brocks, M. O. H. Cioffi, and H. J. C. Voorwald, “Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites,” Appl. Surf. Sci., 274, No. 1, 210-216 (2013).CrossRef
32.
go back to reference N. T. Qazvini and N. Mohammadi, “Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content,” Polymer (Guildf), 46, No. 1, 9088-9096 (2005).CrossRef N. T. Qazvini and N. Mohammadi, “Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content,” Polymer (Guildf), 46, No. 1, 9088-9096 (2005).CrossRef
33.
go back to reference G. B. McKenna and S. L. Simon, “50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers,” Macromolecules, 50, No. 1, 6333-6361 (2017).CrossRef G. B. McKenna and S. L. Simon, “50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers,” Macromolecules, 50, No. 1, 6333-6361 (2017).CrossRef
34.
go back to reference C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, “Relaxation in glassforming liquids and amorphous solids,” J. Appl. Phys., 88, No. 1, 3113-3157 (2000).CrossRef C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, “Relaxation in glassforming liquids and amorphous solids,” J. Appl. Phys., 88, No. 1, 3113-3157 (2000).CrossRef
35.
go back to reference K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, “Role of chemical structure in fragility of polymers: A qualitative picture,” Macromolecules, 41, No. 1, 7232-7238 (2008).CrossRef K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, “Role of chemical structure in fragility of polymers: A qualitative picture,” Macromolecules, 41, No. 1, 7232-7238 (2008).CrossRef
36.
go back to reference F. M. Monticeli, M. Y. Shiino, H. J. C. Voorwald, and M. O. H. Cioffi, “The synergy effect of carbon/glass/epoxy hybrid laminate in Mode I delamination: a physical microfracture analysis,” Eng. Fract. Mech., 239, No. 1, 107295 (2020). F. M. Monticeli, M. Y. Shiino, H. J. C. Voorwald, and M. O. H. Cioffi, “The synergy effect of carbon/glass/epoxy hybrid laminate in Mode I delamination: a physical microfracture analysis,” Eng. Fract. Mech., 239, No. 1, 107295 (2020).
37.
go back to reference Y. Singh, D. Kumar, and S. Kumar, “Thermo-mechanical correlations to erosion performance of chopped e-glass fibre reinforced epoxy resin composites with filler SiC,” J. Mater. Sci. Mater. Eng., 3, No. 1, 438-442 (2016). Y. Singh, D. Kumar, and S. Kumar, “Thermo-mechanical correlations to erosion performance of chopped e-glass fibre reinforced epoxy resin composites with filler SiC,” J. Mater. Sci. Mater. Eng., 3, No. 1, 438-442 (2016).
38.
go back to reference S. Mandal and S. Alam, “Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based hybrid composites,” J. Appl. Polym. Sci., 125, No. 1, E382-E387 (2012).CrossRef S. Mandal and S. Alam, “Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based hybrid composites,” J. Appl. Polym. Sci., 125, No. 1, E382-E387 (2012).CrossRef
39.
go back to reference L. Amaral, L. Yao, R. Alderliesten, and R. Benedictus, “The relation between the strain energy release in fatigue and quasi-static crack growth,” Eng. Fract. Mech., 145, No. 1, 86-97 (2015).CrossRef L. Amaral, L. Yao, R. Alderliesten, and R. Benedictus, “The relation between the strain energy release in fatigue and quasi-static crack growth,” Eng. Fract. Mech., 145, No. 1, 86-97 (2015).CrossRef
40.
go back to reference J. Kubát, M. Rigdahl, and M. Welander, “Characterization of Interfacial Interactions in High Density Polyethylene Filled with Glass Spheres Using Dynamic-Mechanical Analysis,” J. Appl. Polym. Sci., 39, No. 1, 1527-1539 (1990).CrossRef J. Kubát, M. Rigdahl, and M. Welander, “Characterization of Interfacial Interactions in High Density Polyethylene Filled with Glass Spheres Using Dynamic-Mechanical Analysis,” J. Appl. Polym. Sci., 39, No. 1, 1527-1539 (1990).CrossRef
41.
go back to reference A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites,” Compos. Part B Eng., 30, No. 1, 309-320 (1999).CrossRef A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites,” Compos. Part B Eng., 30, No. 1, 309-320 (1999).CrossRef
42.
go back to reference K. W. Bennett and J. Koh, “Dual coated optical fibers and methods for forming the same,” US9063268B2 United States patent 1-10 (2011). K. W. Bennett and J. Koh, “Dual coated optical fibers and methods for forming the same,” US9063268B2 United States patent 1-10 (2011).
43.
go back to reference I. E. Tabrizi, A. Kefal, J. S. M. Zanjani, C. Akalin, and M. Yildiz, “Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory,” Compos. Struct., 223, No. 1, 110971 (2019). I. E. Tabrizi, A. Kefal, J. S. M. Zanjani, C. Akalin, and M. Yildiz, “Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory,” Compos. Struct., 223, No. 1, 110971 (2019).
44.
go back to reference T. Wang, B. Song, K. Qiao, C. Ding, and L. Wang, “Influence of the hybrid ratio and stacking sequence on mechanical and damping properties of hybrid composites,” Polym. Compos., 40, No. 1, 2368-2380 (2019).CrossRef T. Wang, B. Song, K. Qiao, C. Ding, and L. Wang, “Influence of the hybrid ratio and stacking sequence on mechanical and damping properties of hybrid composites,” Polym. Compos., 40, No. 1, 2368-2380 (2019).CrossRef
45.
go back to reference J. Bonhomme, A. Argüelles, J. Viña, and I. Viña, “Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites,” Polym. Test., 28, No. 1, 612-617 (2009).CrossRef J. Bonhomme, A. Argüelles, J. Viña, and I. Viña, “Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites,” Polym. Test., 28, No. 1, 612-617 (2009).CrossRef
46.
go back to reference M. Shiino, T. Pelosi, M. Cioffi, and M. Donadon, “The role of stitch yarn on the delamination resistance in non-crimp fabric: chemical and physical interpretation,” J. Mater. Eng. Perform., 26, No. 1, 978-986 (2017).CrossRef M. Shiino, T. Pelosi, M. Cioffi, and M. Donadon, “The role of stitch yarn on the delamination resistance in non-crimp fabric: chemical and physical interpretation,” J. Mater. Eng. Perform., 26, No. 1, 978-986 (2017).CrossRef
Metadata
Title
The Influence of Carbon/Glass/Epoxy Hybrid Interfacial Adhesion on the Mode II Delamination Fracture Toughness
Authors
F. M. Monticeli
H. L. Ornaghi Jr
M. O. H. Cioffi
H. J. C. Voorwald
Publication date
21-05-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10024-3

Other articles of this Issue 2/2022

Mechanics of Composite Materials 2/2022 Go to the issue

Premium Partners