Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2021

20-11-2021

The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review

Authors: E. N. Kablov, V. O. Startsev

Published in: Mechanics of Composite Materials | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The formation of internal stresses in polymer composite materials (PCMs) caused by different elastic moduli and thermal expansion coefficients of polymer resin and reinforcing fibers, as well as by swelling due to the moisture uptake is discussed. The influence of thermal cycles on the internal stresses and strength of the materials was studied in dry and wet atmospheres. It shown that thermal cycles cause a periodic jumps in the stresses at lowfrequency mechanical loadings, during which the mechanical properties are degraded due to the formation of microscopic cracks in the polymer matrix. The relative changes in the strength, elastic modulus, glass-transition temperatures, moisture diffusion coefficient, and other PCM physical characteristics are proportional to the logarithm of the number of cycles and also depend on the form and size of specimens, amplitude, conditions, and length of thermal cycles. A prolonged action of external actions relaxes the internal stresses and reduces their influence on the aging of PCMs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci., 18, No. 4, 249-254 (1978).CrossRef D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci., 18, No. 4, 249-254 (1978).CrossRef
2.
go back to reference T. A. Collings, “The effect of observed climatic conditoins pn the moisture equilibrium level of fibre-reinforced plastics,” Composites, 17, No. 1, 33-41 (1986).CrossRef T. A. Collings, “The effect of observed climatic conditoins pn the moisture equilibrium level of fibre-reinforced plastics,” Composites, 17, No. 1, 33-41 (1986).CrossRef
3.
go back to reference D. J. Baker, Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program, Nasa Technical Paper 3468, 54 p. (1994). D. J. Baker, Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program, Nasa Technical Paper 3468, 54 p. (1994).
4.
go back to reference R. Vodichka, “Environmental exposure of boron-epoxy composite material,” DSTO Aeronautical and Maritime Res. Lab., Melbourn, Australia, DSTO-TN-0309, 23 p. (2000). R. Vodichka, “Environmental exposure of boron-epoxy composite material,” DSTO Aeronautical and Maritime Res. Lab., Melbourn, Australia, DSTO-TN-0309, 23 p. (2000).
5.
go back to reference I. Nishizaki, H. Sakurada, and T. Tomiyama, “Durability of pultruded GFPR through ten-year outdoor exposure test,” Polymers, 7, 2494-2503 (2015).CrossRef I. Nishizaki, H. Sakurada, and T. Tomiyama, “Durability of pultruded GFPR through ten-year outdoor exposure test,” Polymers, 7, 2494-2503 (2015).CrossRef
6.
go back to reference K. V. Pochiraju, G. A Schoeppner., and G. P. Tandon, Long-Term Durability of Polymeric Matrix Composites, Ed. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Boston, MA: Springer US. (2012). K. V. Pochiraju, G. A Schoeppner., and G. P. Tandon, Long-Term Durability of Polymeric Matrix Composites, Ed. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Boston, MA: Springer US. (2012).
7.
go back to reference Ageing of Composites, Ed. R. Martin, Cambridje: Woodhead Publ. Ltd. (2008). Ageing of Composites, Ed. R. Martin, Cambridje: Woodhead Publ. Ltd. (2008).
8.
go back to reference O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix, 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater., 20, No. 4, 406-409 (1985).CrossRef O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix, 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater., 20, No. 4, 406-409 (1985).CrossRef
9.
go back to reference V. N. Bulmanis and O. V. Startsev, “Prediction of changes in the strength of polymer fiber composites as a result of climatic impact,” Yakutsk: Yakut. branch of the Siberian Branch of the USSR Academy of Sciences, Institute of Physics and Technology. problems of the North., 32 p. (1988). V. N. Bulmanis and O. V. Startsev, “Prediction of changes in the strength of polymer fiber composites as a result of climatic impact,” Yakutsk: Yakut. branch of the Siberian Branch of the USSR Academy of Sciences, Institute of Physics and Technology. problems of the North., 32 p. (1988).
10.
go back to reference Y. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of the anomalous change in the properties of carbonfiber-reinforced plastic KMU-1u during aging in different climatic regions,” Mech. Compos. Mater., 30, No. 2, 190-194 (1994).CrossRef Y. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of the anomalous change in the properties of carbonfiber-reinforced plastic KMU-1u during aging in different climatic regions,” Mech. Compos. Mater., 30, No. 2, 190-194 (1994).CrossRef
11.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metallurgy (Metally), No. 10, 993-1000 (2011). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metallurgy (Metally), No. 10, 993-1000 (2011).
12.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties,” Russ. Metallurgy (Metally), No. 10, 1001-1007 (2011). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties,” Russ. Metallurgy (Metally), No. 10, 1001-1007 (2011).
13.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 3. Significant aging factors,” Russ. Metallurgy (Metally), No. 4, 323-329 (2012). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 3. Significant aging factors,” Russ. Metallurgy (Metally), No. 4, 323-329 (2012).
14.
go back to reference V. O. Startsev and A. V. Slavin, “Resistance of carbon plastics and fiberglass plastics based on melt binders to the effects of moderately cold and moderately warm climates,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 5, Art. 12 (2021). URL: http://www.viam-works.ru (date of access: 20.06.2021). DOI: 10.18577 / 2307-6046-2021-0-5-114-126 V. O. Startsev and A. V. Slavin, “Resistance of carbon plastics and fiberglass plastics based on melt binders to the effects of moderately cold and moderately warm climates,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 5, Art. 12 (2021). URL: http://​www.​viam-works.​ru (date of access: 20.06.2021). DOI: 10.18577 / 2307-6046-2021-0-5-114-126
15.
go back to reference L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing,” Dokl. Phys. Chem., 456, No. 1, 77-81 (2014).CrossRef L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing,” Dokl. Phys. Chem., 456, No. 1, 77-81 (2014).CrossRef
16.
18.
go back to reference L. Belec, T. H. Nguyen, D. L. Nguyen, and J. F. Chailan, “Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale,” Composites: Part A, 68, No. 1, P. 235-241 (2015).CrossRef L. Belec, T. H. Nguyen, D. L. Nguyen, and J. F. Chailan, “Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale,” Composites: Part A, 68, No. 1, P. 235-241 (2015).CrossRef
19.
go back to reference F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progress in Mater. Sci., 83, 536-573 (2016).CrossRef F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progress in Mater. Sci., 83, 536-573 (2016).CrossRef
20.
go back to reference H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Composites: Part B, 164, 129-143 (2019).CrossRef H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Composites: Part B, 164, 129-143 (2019).CrossRef
21.
go back to reference E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 1. Assessment of the influence of significant influencing factors,” Deformation and Destruction of Materials, No. 12, 7-16 (2019). E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 1. Assessment of the influence of significant influencing factors,” Deformation and Destruction of Materials, No. 12, 7-16 (2019).
22.
go back to reference E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 2. Development of research methods for the early stages of aging,” Deformation and Destruction of Materials, No. 1, 15-21 (2020). E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 2. Development of research methods for the early stages of aging,” Deformation and Destruction of Materials, No. 1, 15-21 (2020).
23.
go back to reference O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in an extremely cold climate,” Izv. Altai. State Univ., No. 1 (111), 41-51 (2020). O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in an extremely cold climate,” Izv. Altai. State Univ., No. 1 (111), 41-51 (2020).
24.
go back to reference P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Regions Eng., 2, No. 3, 124-134 (1988).CrossRef P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Regions Eng., 2, No. 3, 124-134 (1988).CrossRef
25.
go back to reference Bazli, Ashrafi, Jafari, Zhao, Raman, and Bai, “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers, 11, No. 9, (2019). Bazli, Ashrafi, Jafari, Zhao, Raman, and Bai, “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers, 11, No. 9, (2019).
26.
go back to reference P. K. Dutta and D. Hui, “Low-temperature and freeze-thaw durability of thick composites,” Composites: Part B, 27, No. 3-4, 371-379 (1996).CrossRef P. K. Dutta and D. Hui, “Low-temperature and freeze-thaw durability of thick composites,” Composites: Part B, 27, No. 3-4, 371-379 (1996).CrossRef
27.
go back to reference V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a cfrp after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No. 2, 171-176 (2016).CrossRef V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a cfrp after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No. 2, 171-176 (2016).CrossRef
28.
go back to reference A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, 2nd ed., Reston (2004). A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, 2nd ed., Reston (2004).
29.
go back to reference H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,” J. Compos. Mater., 10, No. 4, 266-278 (1976).CrossRef H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,” J. Compos. Mater., 10, No. 4, 266-278 (1976).CrossRef
30.
go back to reference N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des., 19, No. 3, 85-91 (1998).CrossRef N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des., 19, No. 3, 85-91 (1998).CrossRef
31.
go back to reference J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos., 6, No. 2, 123-130 (1985).CrossRef J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos., 6, No. 2, 123-130 (1985).CrossRef
32.
go back to reference E. C. Peterson, R. R. Patil, A. R. Kallmeyer, and K. G. Kellogg, “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater., 42, No. 19, 2063-2082 (2008).CrossRef E. C. Peterson, R. R. Patil, A. R. Kallmeyer, and K. G. Kellogg, “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater., 42, No. 19, 2063-2082 (2008).CrossRef
33.
go back to reference L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” Int. J. Solids Struct., 43, No. 18-19, 5449-5467 (2006).CrossRef L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” Int. J. Solids Struct., 43, No. 18-19, 5449-5467 (2006).CrossRef
34.
go back to reference L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comput. Mater. Sci., 68, 255-262 2013.CrossRef L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comput. Mater. Sci., 68, 255-262 2013.CrossRef
35.
go back to reference M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., 53, 209-216 (2014).CrossRef M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., 53, 209-216 (2014).CrossRef
36.
go back to reference M. A. Umarfarooq, P. S. S. Gouda, A. Nandibewoor, N. R Banapurmath., and G. B. V. Kumar, “Determination of residual stresses in GFRP composite using incremental slitting method by the aid of strain gauge,” AIP Conf. Proc., 2057, Article 020038 (2019). M. A. Umarfarooq, P. S. S. Gouda, A. Nandibewoor, N. R Banapurmath., and G. B. V. Kumar, “Determination of residual stresses in GFRP composite using incremental slitting method by the aid of strain gauge,” AIP Conf. Proc., 2057, Article 020038 (2019).
37.
go back to reference A. Jafarpour, M Safarabadi., M. Haghighi-Yazdi, and A. Yousefi, “Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model,” Mech. Adv. Mater. Struct., 1, No. 11 (2020). A. Jafarpour, M Safarabadi., M. Haghighi-Yazdi, and A. Yousefi, “Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model,” Mech. Adv. Mater. Struct., 1, No. 11 (2020).
38.
go back to reference O. V. Startsev, I. I. Perepechko, L. T. Startseva, and G. P. Mashinskaya, “Structural changes in plasticized reticular amorphose polymer,” Vysokomol. Soed., Ser. B, 25, No. 6, 457-461 (1983). O. V. Startsev, I. I. Perepechko, L. T. Startseva, and G. P. Mashinskaya, “Structural changes in plasticized reticular amorphose polymer,” Vysokomol. Soed., Ser. B, 25, No. 6, 457-461 (1983).
39.
go back to reference M. J. Adamson, “Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials,” J. Mater. Sci., 15, No. 7, 1736-1745 (1980).CrossRef M. J. Adamson, “Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials,” J. Mater. Sci., 15, No. 7, 1736-1745 (1980).CrossRef
40.
go back to reference J. P. Komorowski, “Hygrothermal effects in continuos fibre reinforced composites: part 2: Physical properties,” Nat. Res. Council Canada, Nat. Aeronautical Establishment, Structures and Mater. Lab.,Aeronautical Note NAE-AN-10, NRC no 22700, Ottawa (1983). J. P. Komorowski, “Hygrothermal effects in continuos fibre reinforced composites: part 2: Physical properties,” Nat. Res. Council Canada, Nat. Aeronautical Establishment, Structures and Mater. Lab.,Aeronautical Note NAE-AN-10, NRC no 22700, Ottawa (1983).
41.
go back to reference B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct., 21, No. 8, 907-926 (1985).CrossRef B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct., 21, No. 8, 907-926 (1985).CrossRef
42.
go back to reference K. Liao and Y.-M. Tan, “Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite,” Composites: Part B, 32, No. 4, 365-370 (2001).CrossRef K. Liao and Y.-M. Tan, “Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite,” Composites: Part B, 32, No. 4, 365-370 (2001).CrossRef
43.
go back to reference Residual Stresses in Composite Materials, Ed. M. M. Shokrieh (2014). Residual Stresses in Composite Materials, Ed. M. M. Shokrieh (2014).
44.
go back to reference R. Ghaedamini, A. Ghassemi, and A. Atrian, “A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods,” Mater. Res. Express., 6, No. 2, Article 025205 (2018). R. Ghaedamini, A. Ghassemi, and A. Atrian, “A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods,” Mater. Res. Express., 6, No. 2, Article 025205 (2018).
45.
go back to reference K. K. Mahato, M. J. Shukla, D. S. Kumar, and B. C. Ray, “In- service performance of fiber reinforced polymer composite in different environmental conditions: A review,” J. Adv. Res. Manufacturing, Mater. Sci. Metall. Eng., 1, No. 2, 55-88 (2014). K. K. Mahato, M. J. Shukla, D. S. Kumar, and B. C. Ray, “In- service performance of fiber reinforced polymer composite in different environmental conditions: A review,” J. Adv. Res. Manufacturing, Mater. Sci. Metall. Eng., 1, No. 2, 55-88 (2014).
46.
go back to reference W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polym. Compos., 19, No. 4, 440-445 (1998).CrossRef W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polym. Compos., 19, No. 4, 440-445 (1998).CrossRef
47.
go back to reference J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100-150°C),” Composites Science and Technology, 69, No. 9, 1432-1436 (2009).CrossRef J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100-150°C),” Composites Science and Technology, 69, No. 9, 1432-1436 (2009).CrossRef
48.
go back to reference F. Azimpour-Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites,” Bulletin Mater. Sci., 43, No. 1, 88 (2020).CrossRef F. Azimpour-Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites,” Bulletin Mater. Sci., 43, No. 1, 88 (2020).CrossRef
49.
go back to reference C. T. Herakovich and M. W. Hyer, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fracture Mech., 25, No. 5-6, 779-791 (1986).CrossRef C. T. Herakovich and M. W. Hyer, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fracture Mech., 25, No. 5-6, 779-791 (1986).CrossRef
50.
go back to reference A. A Fahmy. and T. G. Cunningham, “Investigation of thermal fatigue in fiber composite materials,” NASA CR-2641, 60 p. (1976). A. A Fahmy. and T. G. Cunningham, “Investigation of thermal fatigue in fiber composite materials,” NASA CR-2641, 60 p. (1976).
51.
go back to reference M. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, No. 10-11, 1725-1735 (2004).CrossRef M. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, No. 10-11, 1725-1735 (2004).CrossRef
52.
go back to reference M. C. Lafarie-Frenot, S. Rouquié, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, No. 4, 662-671 (2006).CrossRef M. C. Lafarie-Frenot, S. Rouquié, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, No. 4, 662-671 (2006).CrossRef
53.
go back to reference S. Y. Park, H. S. Choi, W. J. Choi, and H. Kwon, “Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications,” Composites: Part B, 43, No. 2, 726-738 (2012).CrossRef S. Y. Park, H. S. Choi, W. J. Choi, and H. Kwon, “Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications,” Composites: Part B, 43, No. 2, 726-738 (2012).CrossRef
54.
go back to reference S. Mahdavi, S. K. Gupta, and M. Hojjati, “Thermal cycling of composite laminates made of out-of-autoclave materials,” Sci. Eng. Compos. Mater., 25, No. 6, 1145-1156 (2018).CrossRef S. Mahdavi, S. K. Gupta, and M. Hojjati, “Thermal cycling of composite laminates made of out-of-autoclave materials,” Sci. Eng. Compos. Mater., 25, No. 6, 1145-1156 (2018).CrossRef
55.
go back to reference A. Jafari, H. Ashrafi, M. Bazli, and T. Ozbakkaloglu, “Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries,” Compos. Struct., 223, 110959 (2019).CrossRef A. Jafari, H. Ashrafi, M. Bazli, and T. Ozbakkaloglu, “Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries,” Compos. Struct., 223, 110959 (2019).CrossRef
56.
go back to reference S. A. Grammatikos, R. G. Jones, M. Evernden, and J. R. Correia, “Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures,” Compos. Struct., 153, 297-310 (2016).CrossRef S. A. Grammatikos, R. G. Jones, M. Evernden, and J. R. Correia, “Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures,” Compos. Struct., 153, 297-310 (2016).CrossRef
57.
go back to reference J. M. Sousa, J. R. Correia, S. Cabral-Fonseca, and A. C. Diogo, “Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications,” Compos. Struct., 116, No. 1, 720-731 (2014).CrossRef J. M. Sousa, J. R. Correia, S. Cabral-Fonseca, and A. C. Diogo, “Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications,” Compos. Struct., 116, No. 1, 720-731 (2014).CrossRef
58.
go back to reference T. K. Tsotsis, “Effects of sub-freezing temperatures on graphite/epoxy composite materials,” J. Eng. Mater. Techn., 111, No. 4, 438-439 (1989).CrossRef T. K. Tsotsis, “Effects of sub-freezing temperatures on graphite/epoxy composite materials,” J. Eng. Mater. Techn., 111, No. 4, 438-439 (1989).CrossRef
59.
go back to reference C. J. Jones, R. F. Dickson, T. Adam, H. Reiter, and B. Harris, “The environmental fatigue behaviour of reinforced plastics,” Proc. R. Soc. London, Ser. A, 396, No. 1811, 315-338 (1984).CrossRef C. J. Jones, R. F. Dickson, T. Adam, H. Reiter, and B. Harris, “The environmental fatigue behaviour of reinforced plastics,” Proc. R. Soc. London, Ser. A, 396, No. 1811, 315-338 (1984).CrossRef
60.
go back to reference J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev., 54, No. 4, 279-300 (2001).CrossRef J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev., 54, No. 4, 279-300 (2001).CrossRef
61.
go back to reference J. Gomez and B. Casto, “Freeze-thaw durability of composite materials,” Report No. VTRC 96-R25, 13 p. (1996). J. Gomez and B. Casto, “Freeze-thaw durability of composite materials,” Report No. VTRC 96-R25, 13 p. (1996).
62.
go back to reference M. Alkhader, X. Zhai, and F.-P. Chiang, “Experimental investigation of the synergistic effects of moisture and freezethaw cycles on carbon fiber vinyl-ester composites,” J. Compos. Mater., 52, No. 7, 919-930 (2018).CrossRef M. Alkhader, X. Zhai, and F.-P. Chiang, “Experimental investigation of the synergistic effects of moisture and freezethaw cycles on carbon fiber vinyl-ester composites,” J. Compos. Mater., 52, No. 7, 919-930 (2018).CrossRef
63.
go back to reference V. M. Karbhari, “Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes,” J. Composit. Construction., 6, No. 1, 35-40 (2002).CrossRef V. M. Karbhari, “Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes,” J. Composit. Construction., 6, No. 1, 35-40 (2002).CrossRef
64.
go back to reference H. Katogi, K. Takemura, and N. Iijima, “Residual flexural property of water absorbed CFRP during thermal cycling,” High Performance and Optimum Design of Structures and Materials II, 1, 277-286 (2016).CrossRef H. Katogi, K. Takemura, and N. Iijima, “Residual flexural property of water absorbed CFRP during thermal cycling,” High Performance and Optimum Design of Structures and Materials II, 1, 277-286 (2016).CrossRef
65.
go back to reference S. Li, Y. Y. Lu, and H. T. Ren, “Durability of E-glass fiber reinforced polymer subjected to freeze-thaw cycle and sustained load,” Adv. Mater. Res., 163-167, 3219-3222 (2010).CrossRef S. Li, Y. Y. Lu, and H. T. Ren, “Durability of E-glass fiber reinforced polymer subjected to freeze-thaw cycle and sustained load,” Adv. Mater. Res., 163-167, 3219-3222 (2010).CrossRef
66.
go back to reference S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption,” Compos. Struct., 207, 81-92 (2019).CrossRef S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption,” Compos. Struct., 207, 81-92 (2019).CrossRef
67.
go back to reference T. G. Sorina and G. M. Gunyaev, “Structural carbon-fibre-reinforced plastics and their properties,” Polymer Matrix Composites, Chapman&Hall, 132-198 (1995). T. G. Sorina and G. M. Gunyaev, “Structural carbon-fibre-reinforced plastics and their properties,” Polymer Matrix Composites, Chapman&Hall, 132-198 (1995).
68.
go back to reference K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., 57, No. 11, 1445-1455 (1997).CrossRef K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., 57, No. 11, 1445-1455 (1997).CrossRef
69.
go back to reference O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci. Ser. D, 3, No. 1, 58-61 (2010).CrossRef O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci. Ser. D, 3, No. 1, 58-61 (2010).CrossRef
70.
go back to reference K. Aniskevich, V. Korkhov, J. Faitelsone, and J. Jansons, “Mechanical properties of pultruded glass fiber reinforced plastic after freeze-thaw cycling,” J. Reinf. Plast. Compos., 31, No. 22, 1554-1563 (2012).CrossRef K. Aniskevich, V. Korkhov, J. Faitelsone, and J. Jansons, “Mechanical properties of pultruded glass fiber reinforced plastic after freeze-thaw cycling,” J. Reinf. Plast. Compos., 31, No. 22, 1554-1563 (2012).CrossRef
71.
go back to reference H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos., 7, No. 5, 435-458 (1988).CrossRef H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos., 7, No. 5, 435-458 (1988).CrossRef
72.
go back to reference O. V. Startsev and E. F. Nikishin, “Aging of polymer composite materials exposed to the conditions in outer space,” Mech. Compos. Mater., 29, No. 4, 338-346 (1994).CrossRef O. V. Startsev and E. F. Nikishin, “Aging of polymer composite materials exposed to the conditions in outer space,” Mech. Compos. Mater., 29, No. 4, 338-346 (1994).CrossRef
73.
go back to reference T. Reynolds and H. McManus, “Accelerated Tests of Environmental Degradation in Composite Materials,” Composite Structures: Theory and Practice, Ed. P. Grant and C. Rousseau, West Conshohocken, PA: ASTM Int., 513-525 (2001). T. Reynolds and H. McManus, “Accelerated Tests of Environmental Degradation in Composite Materials,” Composite Structures: Theory and Practice, Ed. P. Grant and C. Rousseau, West Conshohocken, PA: ASTM Int., 513-525 (2001).
74.
go back to reference V. Issoupov, O. V. Startsev, C. Lacabanne, P. Demont, V. Viel-Ingutmbert, M. Dinguirard, and E. F. Nikishin, “Combined effect of thermal and mechanical stresses on the viscoelastic properties of a composite material for space structures,” Protection of Materials and Structures from Space Environment, Dordrecht: Kluwer Acad. Publ., 271-281 (2006). V. Issoupov, O. V. Startsev, C. Lacabanne, P. Demont, V. Viel-Ingutmbert, M. Dinguirard, and E. F. Nikishin, “Combined effect of thermal and mechanical stresses on the viscoelastic properties of a composite material for space structures,” Protection of Materials and Structures from Space Environment, Dordrecht: Kluwer Acad. Publ., 271-281 (2006).
75.
go back to reference O. V. Startsev, A. Yu. Makhonkov, I. S. Deev, and E. F. Nikishin, “Aging of CFRP KMU-4L after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, P. 69-76 (2013). O. V. Startsev, A. Yu. Makhonkov, I. S. Deev, and E. F. Nikishin, “Aging of CFRP KMU-4L after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, P. 69-76 (2013).
76.
go back to reference O. V. Startsev, Y. M. Vapirov, I. S. Deev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., 22, No. 4, 444-449 (1987).CrossRef O. V. Startsev, Y. M. Vapirov, I. S. Deev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., 22, No. 4, 444-449 (1987).CrossRef
77.
go back to reference Aviation materials: Handbook in 13 volumes. V. 13. Climatic and microbiological resistance of non-metallic materials [in Russian], Ed. E. N. Kablova, M., 270 p. (2015). Aviation materials: Handbook in 13 volumes. V. 13. Climatic and microbiological resistance of non-metallic materials [in Russian], Ed. E. N. Kablova, M., 270 p. (2015).
78.
go back to reference V. O. Startsev, V. I. Plotnikov, and Yu. V. Antipov, “Reversible effects of moisture in determining the mechanical properties of PCM under climatic influences,” Tr. VIAM: Elektron. Nauch. Teckhn. Zhurn (2018). URL: http://www.viam-works.ru (date of access 20.06.2021). - 2018. - No. 5. - Art. 12. DOI :. 10.18577 / 2307-6046-2018-0-5-110-118 V. O. Startsev, V. I. Plotnikov, and Yu. V. Antipov, “Reversible effects of moisture in determining the mechanical properties of PCM under climatic influences,” Tr. VIAM: Elektron. Nauch. Teckhn. Zhurn (2018). URL: http://​www.​viam-works.​ru (date of access 20.06.2021). - 2018. - No. 5. - Art. 12. DOI :. 10.18577 / 2307-6046-2018-0-5-110-118
Metadata
Title
The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review
Authors
E. N. Kablov
V. O. Startsev
Publication date
20-11-2021
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2021
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09979-6

Other articles of this Issue 5/2021

Mechanics of Composite Materials 5/2021 Go to the issue

Premium Partners