Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 3/2017

13-10-2016

The influence of linker molecule on photovoltaic performance of CdS quantum dots sensitized translucent TiO2 nanotube solar cells

Authors: Libo Yu, Zhen Li, Hai Song

Published in: Journal of Materials Science: Materials in Electronics | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on translucent TiO2 nanotube (NT) film, CdS quantum dots (QDs) were anchored onto TiO2 NT film using different linker molecules including thioglycolic acid (TGA), mercaptopropionic acid (MPA) and cysteine via hydrothermal method. The CdS QDs sensitized TiO2 NT (CdS/TiO2 NT) electrodes were constructed to quantum dots-sensitized solar cells (QDSSCs). The photovoltaic performance analysis results of the QDSSCs show that the linker molecule plays a significant role in the solar cell performance. The QDSSC using cysteine as linker molecule exhibits best power conversion efficiency than the other QDSSCs using TGA or MPA as linker molecules. The incident photon-to-current conversion efficiency (IPCE) and the electrochemical impedance spectroscopy (EIS) analysis results indicate that amino group of cysteine may has two aspects of the role to improve the power conversion efficiency of the QDSSC, one is that the good charge transfer properties of the cysteine might depend on the good donor–acceptor abilities of the free electron pair of the amino group, another is that distance between the TiO2 NT and the CdS QDs could be slightly decreased due to the cysteine could anchor the CdS QDs via both amino and thiol group.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A.J. Nozik, J.R. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef A.J. Nozik, J.R. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef
2.
go back to reference Y. Liu, Z. Li, L. Yu, S. Sun, Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. J. Nanopart. Res. 17, 132 (2015)CrossRef Y. Liu, Z. Li, L. Yu, S. Sun, Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. J. Nanopart. Res. 17, 132 (2015)CrossRef
3.
go back to reference P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef
4.
go back to reference D.A. Hines, P.V. Kamat, Recent advances in quantum dot surface chemistry. ACS Appl. Mater. Interfaces. 6, 3041–3057 (2014)CrossRef D.A. Hines, P.V. Kamat, Recent advances in quantum dot surface chemistry. ACS Appl. Mater. Interfaces. 6, 3041–3057 (2014)CrossRef
5.
go back to reference J.H. Bang, P.V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3, 1467–1476 (2009)CrossRef J.H. Bang, P.V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3, 1467–1476 (2009)CrossRef
6.
go back to reference S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef
7.
go back to reference H. Choi, C. Nahm, J. Kim, C. Kim, S. Kang, T. Hwang, B, park, review paper: toward highly efficient quantum-dot- and dye-sensitized solar cells. Curr. Appl. Phys. 13, S2–S13 (2013)CrossRef H. Choi, C. Nahm, J. Kim, C. Kim, S. Kang, T. Hwang, B, park, review paper: toward highly efficient quantum-dot- and dye-sensitized solar cells. Curr. Appl. Phys. 13, S2–S13 (2013)CrossRef
8.
go back to reference A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, CdS quantum dot sensitized nanocrystalline Cd-doped TiO2 thin film for photoelectrochemical solar cells. J. Mater. Sci. Mater. Electron. 24, 3014–3020 (2013)CrossRef A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, CdS quantum dot sensitized nanocrystalline Cd-doped TiO2 thin film for photoelectrochemical solar cells. J. Mater. Sci. Mater. Electron. 24, 3014–3020 (2013)CrossRef
9.
go back to reference P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5 %. J. Am. Chem. Soc. 134, 2508–2511 (2012)CrossRef P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5 %. J. Am. Chem. Soc. 134, 2508–2511 (2012)CrossRef
10.
go back to reference I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, R.J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007 (2008)CrossRef I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, R.J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007 (2008)CrossRef
11.
go back to reference I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)CrossRef I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)CrossRef
12.
go back to reference K.M. Coughlin, J.S. Nevins, D.F. Watson, Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 8649–8654 (2013)CrossRef K.M. Coughlin, J.S. Nevins, D.F. Watson, Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 8649–8654 (2013)CrossRef
13.
go back to reference Q. Chen, D. Xu, Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 113, 6310–6314 (2009)CrossRef Q. Chen, D. Xu, Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 113, 6310–6314 (2009)CrossRef
14.
go back to reference X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang, X. Yao, One-step preparation and assembly of aqueous colloidal CdSxSe1−x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 5139–5148 (2013)CrossRef X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang, X. Yao, One-step preparation and assembly of aqueous colloidal CdSxSe1−x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 5139–5148 (2013)CrossRef
15.
go back to reference Z. Li, L. Yu, Y. Liu, S. Sun, Efficient quantum dot-sensitized solar cell based on CdSxSe1−x/Mn-CdS/TiO2 nanotube array electrode. Electrochim. Acta 153, 200–209 (2015)CrossRef Z. Li, L. Yu, Y. Liu, S. Sun, Efficient quantum dot-sensitized solar cell based on CdSxSe1−x/Mn-CdS/TiO2 nanotube array electrode. Electrochim. Acta 153, 200–209 (2015)CrossRef
16.
go back to reference S.S. Kalanur, S.Y. Chae, O.S. Joo, Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim. Acta 103, 91–95 (2013)CrossRef S.S. Kalanur, S.Y. Chae, O.S. Joo, Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim. Acta 103, 91–95 (2013)CrossRef
17.
go back to reference P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)CrossRef P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)CrossRef
18.
go back to reference Z. Li, L. Yu, Y. Liu, S. Sun, Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J. Mater. Sci. 49, 6392–6403 (2014)CrossRef Z. Li, L. Yu, Y. Liu, S. Sun, Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J. Mater. Sci. 49, 6392–6403 (2014)CrossRef
19.
go back to reference Z. Li, L. Yu, Y. Liu, S. Sun, CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim. Acta 129, 379–3788 (2014)CrossRef Z. Li, L. Yu, Y. Liu, S. Sun, CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim. Acta 129, 379–3788 (2014)CrossRef
20.
go back to reference Z. Li, L. Yu, Y. Liu, S. Sun, Arrays of ZnxCd1−xSe/TiO2 nanotubes: fabrication by ion-exchange and photovoltaic applications. J. Mater. Sci. Mater. Electron. 26, 1625–1633 (2015)CrossRef Z. Li, L. Yu, Y. Liu, S. Sun, Arrays of ZnxCd1−xSe/TiO2 nanotubes: fabrication by ion-exchange and photovoltaic applications. J. Mater. Sci. Mater. Electron. 26, 1625–1633 (2015)CrossRef
21.
go back to reference L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, Homogeneously alloyed CdSxSe1−x nanocrystals synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 128, 12299–12306 (2006)CrossRef L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, Homogeneously alloyed CdSxSe1−x nanocrystals synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 128, 12299–12306 (2006)CrossRef
22.
23.
go back to reference H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sust. Energ. Rev. 22, 148–167 (2013)CrossRef H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sust. Energ. Rev. 22, 148–167 (2013)CrossRef
24.
go back to reference M. Grätzel, Dye-sensitized solar cells. J. Photoch. Photobio. C 4, 145–153 (2003)CrossRef M. Grätzel, Dye-sensitized solar cells. J. Photoch. Photobio. C 4, 145–153 (2003)CrossRef
25.
go back to reference W. Mao, J. Guo, W. Yang, C. Wang, J. He, J. Chen, Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology 18, 485611 (2007)CrossRef W. Mao, J. Guo, W. Yang, C. Wang, J. He, J. Chen, Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology 18, 485611 (2007)CrossRef
26.
go back to reference Y. Bai, I. Mora-Seró, F.D. Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRef Y. Bai, I. Mora-Seró, F.D. Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRef
27.
go back to reference X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications. Chem. Rev. 107, 2891–2959 (2007)CrossRef X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications. Chem. Rev. 107, 2891–2959 (2007)CrossRef
28.
go back to reference P.V. Kamat, Boosting the efficiency of quantum dot densitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2011)CrossRef P.V. Kamat, Boosting the efficiency of quantum dot densitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2011)CrossRef
29.
go back to reference Y. Choi, M. Seol, W. Kim, K. Yong, Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. J. Phys. Chem. C 118, 5664–5670 (2014)CrossRef Y. Choi, M. Seol, W. Kim, K. Yong, Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. J. Phys. Chem. C 118, 5664–5670 (2014)CrossRef
30.
go back to reference I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, A. Zaban, Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J. Phys. Chem. Lett. 2, 3032–3035 (2011)CrossRef I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, A. Zaban, Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J. Phys. Chem. Lett. 2, 3032–3035 (2011)CrossRef
31.
go back to reference A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cell by open-circuit voltage decay measurement. ChemPhysChem 4, 859–864 (2003)CrossRef A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cell by open-circuit voltage decay measurement. ChemPhysChem 4, 859–864 (2003)CrossRef
Metadata
Title
The influence of linker molecule on photovoltaic performance of CdS quantum dots sensitized translucent TiO2 nanotube solar cells
Authors
Libo Yu
Zhen Li
Hai Song
Publication date
13-10-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 3/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5871-9

Other articles of this Issue 3/2017

Journal of Materials Science: Materials in Electronics 3/2017 Go to the issue