Skip to main content
Top

2019 | OriginalPaper | Chapter

The Influence of Phosphorus Dopant on the Structural and Mechanical Properties of Silicon

Authors : Shadia Ikhmayies, Yasemin Ö. Çiftci

Published in: Energy Technology 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phosphorus (P) is widely used as n-type dopant for silicon (Si) to form the emitter layer in wafer-based silicon solar cells. The main purpose of this work is to investigate the influence of P doping on the structural and mechanical properties of silicon. CASTEP program, which uses the density functional theory (DFT), with a plane-wave basis, is used to study the structural, electronic, and mechanical properties of undoped and P-doped Si (Si1−xPx for 0.0001 ≤ x ≤ 0.05). The density of states (DOS), band structure, elastic constants, bulk modulus \( \left( B \right) \), Young’s modulus (E), Shear modulus \( \left( G \right) \), and Poisson’s ratio (v) were all calculated. It is found that brittleness of Si increased by P doping.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pfrommer BG, Cộté M, Louie SG, Cohen ML (1997) Ab initio study of silicon in the R8 phase. Phys Rev B 56(15):6662–6668CrossRef Pfrommer BG, Cộté M, Louie SG, Cohen ML (1997) Ab initio study of silicon in the R8 phase. Phys Rev B 56(15):6662–6668CrossRef
2.
go back to reference Bernstein N, Mehl MJ, Papaconstantopoulos DA (2000-I) Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model. Phys Rev B 62(7):4477–4487CrossRef Bernstein N, Mehl MJ, Papaconstantopoulos DA (2000-I) Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model. Phys Rev B 62(7):4477–4487CrossRef
3.
go back to reference Güler E, Güler M (2013) Geometry optimization calculations for the elasticity of gold at high pressure. Adv Mater Sci Eng 2013:525673CrossRef Güler E, Güler M (2013) Geometry optimization calculations for the elasticity of gold at high pressure. Adv Mater Sci Eng 2013:525673CrossRef
4.
go back to reference Pi Xiaodong (2012) Doping silicon nanocrystals with boron and phosphorus. J Nanomater 2012:912903CrossRef Pi Xiaodong (2012) Doping silicon nanocrystals with boron and phosphorus. J Nanomater 2012:912903CrossRef
5.
go back to reference Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mater. 14:2717–2744CrossRef Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mater. 14:2717–2744CrossRef
6.
go back to reference Zhu W, Xiao H (2008) Ab initio study of electronic structure and optical properties of heavy-metal azides: TlN3, AgN3, and CuN3. J Comput Chem 29:176–184CrossRef Zhu W, Xiao H (2008) Ab initio study of electronic structure and optical properties of heavy-metal azides: TlN3, AgN3, and CuN3. J Comput Chem 29:176–184CrossRef
7.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
8.
go back to reference Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef
9.
go back to reference Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef
10.
go back to reference Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61(12):7877–7882CrossRef Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61(12):7877–7882CrossRef
11.
go back to reference Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef
12.
go back to reference Wortman JJ, Evans RA (1965) Youngs’ modulus, shear modulus and Poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156CrossRef Wortman JJ, Evans RA (1965) Youngs’ modulus, shear modulus and Poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156CrossRef
13.
go back to reference Staroverov VN, Scuseria GE, Tao J, Perdew JP (2004) Tests of a ladder of density functionals for bulk solids and surfaces. Phys Rev B 69:075102CrossRef Staroverov VN, Scuseria GE, Tao J, Perdew JP (2004) Tests of a ladder of density functionals for bulk solids and surfaces. Phys Rev B 69:075102CrossRef
14.
go back to reference Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York
15.
go back to reference Haas Philipp, Tran Fabien, Blaha Peter (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104CrossRef Haas Philipp, Tran Fabien, Blaha Peter (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104CrossRef
16.
go back to reference Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRef Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRef
17.
go back to reference Hébert C, Luitz J, Schattschneider P (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron 34:219–225CrossRef Hébert C, Luitz J, Schattschneider P (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron 34:219–225CrossRef
18.
go back to reference Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413CrossRef Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413CrossRef
19.
go back to reference Prikhodko M, Miao MS, Lambrecht WRL (2002) Pressure dependence of sound velocities in 3C-SiC and their relation to the high-pressure phase transition. Phys Rev B 66:125201CrossRef Prikhodko M, Miao MS, Lambrecht WRL (2002) Pressure dependence of sound velocities in 3C-SiC and their relation to the high-pressure phase transition. Phys Rev B 66:125201CrossRef
20.
go back to reference Güler E, Güler M (2015) Elastic and mechanical properties of cubic diamond under pressure. Chin J Phys 53(2):040807 Güler E, Güler M (2015) Elastic and mechanical properties of cubic diamond under pressure. Chin J Phys 53(2):040807
21.
go back to reference Schall JD, Gao G, Harrison JA (2008) Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B 77:115209CrossRef Schall JD, Gao G, Harrison JA (2008) Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B 77:115209CrossRef
22.
go back to reference Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Internet 11:23–32 Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Internet 11:23–32
23.
go back to reference Evecen M, Ciftci YO (2017) First-principles study on the structural, elastic, electronic and vibrational properties of scandium based intermetallic compounds (ScX, X = Co, Rh and Ir) under pressure. J Nanoelectron Optoelectron 12:100–108CrossRef Evecen M, Ciftci YO (2017) First-principles study on the structural, elastic, electronic and vibrational properties of scandium based intermetallic compounds (ScX, X = Co, Rh and Ir) under pressure. J Nanoelectron Optoelectron 12:100–108CrossRef
24.
go back to reference Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res Ibero Am J 17(5):1268–1272 Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res Ibero Am J 17(5):1268–1272
25.
go back to reference Bensalem S, Chegaar M, Maouche D, Bouhemadou A (2014) Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. J Alloy Compd 589:137–142CrossRef Bensalem S, Chegaar M, Maouche D, Bouhemadou A (2014) Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. J Alloy Compd 589:137–142CrossRef
26.
go back to reference Fatima B, Chouhan SS, Acharya N, Sanyal SP (2014) Theoretical prediction of the electronic structure, bonding behavior and elastic moduli of scandium intermetallics. Internet 53:129–139 Fatima B, Chouhan SS, Acharya N, Sanyal SP (2014) Theoretical prediction of the electronic structure, bonding behavior and elastic moduli of scandium intermetallics. Internet 53:129–139
27.
go back to reference Güler M, Güler E (2013) Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chin Phys Lett 30(5):056201CrossRef Güler M, Güler E (2013) Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chin Phys Lett 30(5):056201CrossRef
28.
go back to reference Guo Y, Wang Q, Kawazoe Y, Jena P (2015) A New silicon phase with direct band gap and novel optoelectronic properties. Sci Rep 5:14342CrossRef Guo Y, Wang Q, Kawazoe Y, Jena P (2015) A New silicon phase with direct band gap and novel optoelectronic properties. Sci Rep 5:14342CrossRef
29.
go back to reference Anderson HL (ed) (1989) A Physicist’s desk reference, The second edition of physics Vade Mecum. American Institute of Physics, New York Anderson HL (ed) (1989) A Physicist’s desk reference, The second edition of physics Vade Mecum. American Institute of Physics, New York
30.
go back to reference George A (1997) Elastic constants and moduli of diamond cubic Si. In: Hull R (ed). Properties of crystalline silicon 20, EMIS Data reviews, INSPEC, IEE, London, pp 98–103 George A (1997) Elastic constants and moduli of diamond cubic Si. In: Hull R (ed). Properties of crystalline silicon 20, EMIS Data reviews, INSPEC, IEE, London, pp 98–103
Metadata
Title
The Influence of Phosphorus Dopant on the Structural and Mechanical Properties of Silicon
Authors
Shadia Ikhmayies
Yasemin Ö. Çiftci
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-06209-5_21