Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4

Authors: A. S. Klepikova, O. E. Petukhova, M. R. Popov, N. G. Shelushinina, T. B. Charikova

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

This paper presents the results of studies of the temperature and field dependences of the resistivity tensor of the electron-doped superconductor Nd2 – xCexCuO4 (0.12 ≤ x ≤ 0.20) in the CuO2 conducting planes and in the direction perpendicular to the CuO2 planes. These results are successfully interpreted within the concept of quasi-two-dimensionality of the systems with high metallic conductivity in the CuO2 conducting planes (dρab/dT > 0) and nonmetallic temperature dependence of conductivity in the direction of the c‑axis (dρc/dT < 0) due to incoherent tunneling and thermal activation through barriers between the CuO2 conducting layers. The specificities of the behavior of the magnetoresistivity ρxx(B) and the Hall resistivity ρxy(B) in the mixed (resistive) state are associated with the dynamics of the transverse motion of Abrikosov and Josephson vortices in the flux flow regime in crossed electric and magnetic fields.
Literature
1.
go back to reference K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987). K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987).
2.
go back to reference E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd 2 – xCe xCuO 4,” Science 347, 282–285 (2015. E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd 2 – xCe xCuO 4,” Science 347, 282–285 (2015.
3.
go back to reference P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015). P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015).
4.
go back to reference A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd 2 – xCe xCuO 4 /SrTiO 3,” J. Phys. Conf. Ser. 993, 012002 (2018). A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd 2 – xCe xCuO 4 /SrTiO 3,” J. Phys. Conf. Ser. 993, 012002 (2018).
5.
go back to reference A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018).
6.
go back to reference A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd 1.83Ce 0.17CuO 4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014). A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd 1.83Ce 0.17CuO 4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014).
7.
go back to reference A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd 2 – xCe xCuO 4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018). A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd 2 – xCe xCuO 4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018).
8.
go back to reference A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd 2 – xCe xCuO 4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018). A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd 2 – xCe xCuO 4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018).
9.
go back to reference A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd 1.85Ce 0.15CuO 4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019). A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd 1.85Ce 0.15CuO 4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019).
10.
go back to reference A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd 1.9Ce 0.1CuO 4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021). A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd 1.9Ce 0.1CuO 4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021).
11.
go back to reference H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO 2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989). H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO 2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989).
12.
go back to reference E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd 2 – yCe yCuO z,” Phys. Rev. B 41, 6582–6590 (1990). E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd 2 – yCe yCuO z,” Phys. Rev. B 41, 6582–6590 (1990).
13.
go back to reference N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd 1.85Ce 0.15CuO 4 – δ,” Phys. Rev. B 43, 12930–12934 (1991). N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd 1.85Ce 0.15CuO 4 – δ,” Phys. Rev. B 43, 12930–12934 (1991).
14.
go back to reference A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd 2 – xCe xCuO y,” Phys. Rev. B 53, 5157–5159 (1996). A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd 2 – xCe xCuO y,” Phys. Rev. B 53, 5157–5159 (1996).
15.
go back to reference T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. 483, 113–118 (2012). T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. 483, 113–118 (2012).
16.
go back to reference H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd 2 – xCe xCuO 4,” Phys. Rev. B 75, 224514 (2007). H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd 2 – xCe xCuO 4,” Phys. Rev. B 75, 224514 (2007).
17.
go back to reference J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019). J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019).
18.
go back to reference M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008). M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008).
19.
go back to reference A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991). A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991).
20.
go back to reference Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian]. Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian].
21.
go back to reference A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Low Temp. Phys. 45, 212 (2019). A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Low Temp. Phys. 45, 212 (2019).
22.
go back to reference P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988). P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988).
23.
go back to reference G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991). G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991).
24.
go back to reference T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO 2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991). T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO 2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991).
25.
go back to reference T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd 2 – xCe xCuO 4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007). T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd 2 – xCe xCuO 4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007).
26.
go back to reference Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd 2 – xCe xCuO 4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991). Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd 2 – xCe xCuO 4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991).
27.
go back to reference T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd 2CuO 4,” Phys. C Supercond. 388– 389, 323–324 (2003). T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd 2CuO 4,” Phys. C Supercond. 388389, 323–324 (2003).
28.
go back to reference T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd 2 – xCe xCuO 4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013). T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd 2 – xCe xCuO 4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013).
29.
go back to reference A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd 2 – xCe xCuO 4 + δ and Ca 2 ‒ xSr xRuO 4,” Phys. Met. Metallogr. 104, 67–80 (2007). A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd 2 – xCe xCuO 4 + δ and Ca 2 ‒ xSr xRuO 4,” Phys. Met. Metallogr. 104, 67–80 (2007).
30.
go back to reference N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976).
31.
go back to reference J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989). J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989).
32.
go back to reference H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999). H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999).
33.
go back to reference T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995). T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995).
34.
go back to reference P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd 1.85Ce 0.15CuO 4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995). P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd 1.85Ce 0.15CuO 4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995).
35.
go back to reference M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984). M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984).
36.
go back to reference C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd 1.85CuO 4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989). C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd 1.85CuO 4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989).
37.
go back to reference A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995). A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995).
38.
go back to reference R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998). R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998).
39.
go back to reference N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992). N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992).
40.
go back to reference M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi 2Sr 2CaCu 2O 8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003). M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi 2Sr 2CaCu 2O 8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003).
41.
go back to reference V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998). V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998).
42.
go back to reference P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian]. P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian].
43.
go back to reference M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007). M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007).
44.
go back to reference M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. C Supercond. 460– 462, 831–832 (2007). M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. C Supercond. 460462, 831–832 (2007).
45.
go back to reference M. Giura, R. Fastampa, S. Sarti, and E. Silva, “ c-Axis transport and phenomenology of the pseudogap state in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. Rev. B 70, 214530 (2004). M. Giura, R. Fastampa, S. Sarti, and E. Silva, “ c-Axis transport and phenomenology of the pseudogap state in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. Rev. B 70, 214530 (2004).
46.
go back to reference M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd 2 ‒ xCe xCuO 4 films deposited on SrTiO 3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019). M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd 2 ‒ xCe xCuO 4 films deposited on SrTiO 3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019).
47.
go back to reference A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Low Temp. Phys. 45, 217–223 (2019). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Low Temp. Phys. 45, 217–223 (2019).
48.
go back to reference F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998). F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998).
49.
go back to reference B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984). B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
50.
go back to reference A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987). A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987).
51.
go back to reference A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018).
52.
go back to reference M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019). M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019).
53.
go back to reference T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd 2 – xCe xCuO 4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017). T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd 2 – xCe xCuO 4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017).
54.
go back to reference G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994). G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).
55.
go back to reference S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi 2Sr 2CaCu 2O 8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989). S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi 2Sr 2CaCu 2O 8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989).
56.
go back to reference B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991). B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991).
57.
go back to reference N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996). N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996).
58.
go back to reference E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995). E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995).
59.
go back to reference N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009). N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009).
60.
go back to reference M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed. M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed.
61.
go back to reference W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991). W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991).
62.
go back to reference R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi 2Sr 2CaCu 2O 8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992). R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi 2Sr 2CaCu 2O 8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992).
63.
go back to reference M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “ c‑Axis Conductivity and Intrinsic Josephson Effects in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996). M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “ c‑Axis Conductivity and Intrinsic Josephson Effects in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996).
64.
go back to reference A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000). A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000).
65.
go back to reference B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990). B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990).
66.
go back to reference G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991). G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991).
67.
go back to reference P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967). P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967).
68.
go back to reference L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996). L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996).
69.
go back to reference A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988). A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988).
70.
go back to reference S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000). S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000).
71.
go back to reference P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990). P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990).
72.
go back to reference R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999). R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999).
73.
go back to reference J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO 2 layers and the origin of the negative Hall anomaly in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993). J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO 2 layers and the origin of the negative Hall anomaly in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993).
74.
go back to reference J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965). J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965).
75.
go back to reference N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd 2 – xCe xCuO 4 + δ ( x = 0.14),” Low Temp. Phys. 43, 475–477 (2017). N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd 2 – xCe xCuO 4 + δ ( x = 0.14),” Low Temp. Phys. 43, 475–477 (2017).
76.
go back to reference D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995). D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995).
77.
go back to reference M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995). M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995).
78.
go back to reference A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995). A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995).
79.
go back to reference X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018). X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018).
80.
go back to reference F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019). F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019).
81.
go back to reference N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993). N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993).
82.
go back to reference A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995). A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995).
83.
go back to reference V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989). V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989).
84.
go back to reference L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975). L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975).
85.
go back to reference W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016). W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016).
86.
go back to reference K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989). K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989).
87.
go back to reference I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi 2Sr 2CaCu 2O x is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990). I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi 2Sr 2CaCu 2O x is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990).
88.
go back to reference G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019). G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019).
89.
go back to reference O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Phys. C Supercond. Appl. 578, 1353738 (2020). O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Phys. C Supercond. Appl. 578, 1353738 (2020).
Metadata
Title
The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4
Authors
A. S. Klepikova
O. E. Petukhova
M. R. Popov
N. G. Shelushinina
T. B. Charikova
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020053