Skip to main content
Top
Published in: Russian Journal of Nondestructive Testing 2/2021

01-02-2021 | ACOUSTIC METHODS

The Law of Response of Propagation Time and Amplitude of Ultrasonic LCR Wave in the Elastic-Plastic Deformation of X70 Steel

Authors: Hourui Wang, Wenguang Yu, Xi Chen, Dongze Li, Guangzhi Wang, ZeXin Wang, Kaihong Wang, Xin Qiao, Boyu Tian, Shaobo Wang, Zhenjiang Yang

Published in: Russian Journal of Nondestructive Testing | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays X70 steel has been used as a core material for the construction of high-pressure, large-diameter and high-strength steel pipelines. The wall of piplines of an operating pipline system will deform in various degrees. Severe deformation will lead to microcracks or even a fracture. The ultrasonic flaw detection method is designed for the detection and evaluation of microcracks and defects caused by the deformation of X70 steel. However, an effective method to measure the stress level of X70 steel accurately is still lacking since the deformation of X70 steel often occurs within the elastic stage or plastic stage. Through conducting an experiment to study the tensile test of X70 steel specimens under a constant temperature, and measuring the propagation time and amplitude of ultrasonic LCR wave simultaneously to conclude the law of the propagation of ultrasonic LCR wave in elastic-plastic deformation of X70 steel, and determine the relationship between the propagation time and the amplitude of ultrasonic LCR wave and the deformation degree of X70 steel. According to the study, the deformation degree of X70 steel could be determined by the propagation time of ultrasonic LCR wave and the amplitude of the first wave: the level of stress could be calculated within the elastic stage and the deformation degree could be calculated within the plastic stage. The study results provide an effective support for the stress measurement of X70 steel by ultrasonic LCR wave.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marques, M.J. et al., Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, J. Mater. Process. Technol., 2015, vol. 222, pp. 52–60.CrossRef Marques, M.J. et al., Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, J. Mater. Process. Technol., 2015, vol. 222, pp. 52–60.CrossRef
2.
go back to reference Bazilevskii, A.A., Korzunin, G.S., and Matvienko, A.F., Stress corrosion in pipes of different diameters during the nondestructive testing of gas mains, Russ. J. Nondestr. Test., 2014, vol. 49, no. 1, pp. 54–59.CrossRef Bazilevskii, A.A., Korzunin, G.S., and Matvienko, A.F., Stress corrosion in pipes of different diameters during the nondestructive testing of gas mains, Russ. J. Nondestr. Test., 2014, vol. 49, no. 1, pp. 54–59.CrossRef
3.
go back to reference Rodrguez, M.A., Emeterio, J.L.S., Lázaro, J.C., and Ramos, A., Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and wigner-ville transform processing, Ultrasonics, 2004, vol. 42, no. 9, pp. 847–851.CrossRef Rodrguez, M.A., Emeterio, J.L.S., Lázaro, J.C., and Ramos, A., Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and wigner-ville transform processing, Ultrasonics, 2004, vol. 42, no. 9, pp. 847–851.CrossRef
4.
go back to reference Cruz, F.C., Filho, E.F.S., Albuquerque, M.C.S., Silva, I.C., and Gouvêa, L.L., Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing, Ultrasonics, 2016, vol. 73, pp. 1–8.CrossRef Cruz, F.C., Filho, E.F.S., Albuquerque, M.C.S., Silva, I.C., and Gouvêa, L.L., Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing, Ultrasonics, 2016, vol. 73, pp. 1–8.CrossRef
5.
go back to reference Stepanova, L.N., Chernova, V.V., and Ramazanov, I.S., A procedure for locating acoustic-emission signals during static testing of carbon composite samples, Russ. J. Nondestr. Test., 2015, vol. 51, no. 4, pp. 227–235.CrossRef Stepanova, L.N., Chernova, V.V., and Ramazanov, I.S., A procedure for locating acoustic-emission signals during static testing of carbon composite samples, Russ. J. Nondestr. Test., 2015, vol. 51, no. 4, pp. 227–235.CrossRef
6.
go back to reference Cullity, B.D., Elements of X-Ray Diffraction, Reading: Addison-Wesley, 1956. Cullity, B.D., Elements of X-Ray Diffraction, Reading: Addison-Wesley, 1956.
7.
go back to reference Filinov, V.V., Kuznetsov, A.N., and Arakelov, P.G., Monitoring stressed state of pipelines by magnetic parameters of metal, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 51–61.CrossRef Filinov, V.V., Kuznetsov, A.N., and Arakelov, P.G., Monitoring stressed state of pipelines by magnetic parameters of metal, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 51–61.CrossRef
8.
go back to reference Kostin, V.N., et al., Magnetic and magnetoacoustic testing parameters of the stressed-strained state of carbon steels that were subjected to a cold plastic deformation and annealing, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 624–632.CrossRef Kostin, V.N., et al., Magnetic and magnetoacoustic testing parameters of the stressed-strained state of carbon steels that were subjected to a cold plastic deformation and annealing, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 624–632.CrossRef
9.
go back to reference Kim, S.H., Kim, J.B., and Lee, W.J., Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9cr–1mo steel weld, J. Mater. Process. Technol., 2009, vol. 209, no. 8, pp. 3905–3913.CrossRef Kim, S.H., Kim, J.B., and Lee, W.J., Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9cr–1mo steel weld, J. Mater. Process. Technol., 2009, vol. 209, no. 8, pp. 3905–3913.CrossRef
10.
go back to reference Rossini, N.S., Dassisti, M., Benyounis, K.Y., and Olabi, A.G., Methods of measuring residual stresses in components, Mater. Des., 2012, vol. 35, no. 119, pp. 572–588.CrossRef Rossini, N.S., Dassisti, M., Benyounis, K.Y., and Olabi, A.G., Methods of measuring residual stresses in components, Mater. Des., 2012, vol. 35, no. 119, pp. 572–588.CrossRef
11.
go back to reference Yashar Javadi, Mehdi Ahmadi Najafabadi, and Mehdi Akhlaghi, Residual stress evaluation in dissimilar welded joints using finite element simulation and the L CR, ultrasonic wave, Russ. J. Nondestr. Test., 2012, vol. 48, no. 9, pp. 541–552.CrossRef Yashar Javadi, Mehdi Ahmadi Najafabadi, and Mehdi Akhlaghi, Residual stress evaluation in dissimilar welded joints using finite element simulation and the L CR, ultrasonic wave, Russ. J. Nondestr. Test., 2012, vol. 48, no. 9, pp. 541–552.CrossRef
12.
go back to reference Murav’eva, O.V., Murav’ev, V.V., Gabbasova, M. A., et al., Electromagnetic-acoustic structural analysis of rolled bars, AIP Conf. Proc., 2016, vol. 1785, no. 1, article ID 030017.CrossRef Murav’eva, O.V., Murav’ev, V.V., Gabbasova, M. A., et al., Electromagnetic-acoustic structural analysis of rolled bars, AIP Conf. Proc., 2016, vol. 1785, no. 1, article ID 030017.CrossRef
13.
go back to reference Murav’ev, V.V., Murav’eva, O.V., and Gabbasova, M.A., Non-destructive electromagnetic-acoustic evaluation methods of anisotropy and elastic properties in structural alloy steel rolled products, AIP Conf. Proc., 2015, vol. 1683, pp. 259–266. Murav’ev, V.V., Murav’eva, O.V., and Gabbasova, M.A., Non-destructive electromagnetic-acoustic evaluation methods of anisotropy and elastic properties in structural alloy steel rolled products, AIP Conf. Proc., 2015, vol. 1683, pp. 259–266.
14.
go back to reference Murav'ev, V.V. et al., An electromagnetic-acoustic method for studying stress-strain states of rails, Russ. J. Nondestr.Test., 2016, vol. 52, no. 7, pp. 370–376.CrossRef Murav'ev, V.V. et al., An electromagnetic-acoustic method for studying stress-strain states of rails, Russ. J. Nondestr.Test., 2016, vol. 52, no. 7, pp. 370–376.CrossRef
15.
go back to reference Muravyev, V.V., Volkova, L.V., and Lapchenko, M.A., Ultrasonic in-process control of residual stresses in locomotive tires, Russ. J. Nondestr. Test., 2015, vol. 51, no. 5, pp. 259–271.CrossRef Muravyev, V.V., Volkova, L.V., and Lapchenko, M.A., Ultrasonic in-process control of residual stresses in locomotive tires, Russ. J. Nondestr. Test., 2015, vol. 51, no. 5, pp. 259–271.CrossRef
16.
go back to reference Murav'ev, V.V., Volkova, L.V., and Balobanov, E.N., Estimation of residual stresses in locomotive wheel treads using the acoustoelasticity method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 382–386.CrossRef Murav'ev, V.V., Volkova, L.V., and Balobanov, E.N., Estimation of residual stresses in locomotive wheel treads using the acoustoelasticity method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 382–386.CrossRef
17.
go back to reference Kamyshev, A.V. et al., Generalized coefficients for measuring mechanical stresses in carbon and low alloyed steels by the acoustoelasticity method, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 1–8.CrossRef Kamyshev, A.V. et al., Generalized coefficients for measuring mechanical stresses in carbon and low alloyed steels by the acoustoelasticity method, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 1–8.CrossRef
18.
go back to reference Ivanova, Yonka, Partalin, T., and Pashkuleva, D., Acoustic investigations of the steel samples deformation during the tensile, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 39–50.CrossRef Ivanova, Yonka, Partalin, T., and Pashkuleva, D., Acoustic investigations of the steel samples deformation during the tensile, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 39–50.CrossRef
19.
go back to reference Khlybov, A.A., et al., The determination of mechanical stresses using Rayleigh surface waves excited by a magnetoacoustic transducer, Russ. J. Nondestr. Test., 2014, vol. 50, no. 12, pp. 701–707.CrossRef Khlybov, A.A., et al., The determination of mechanical stresses using Rayleigh surface waves excited by a magnetoacoustic transducer, Russ. J. Nondestr. Test., 2014, vol. 50, no. 12, pp. 701–707.CrossRef
20.
go back to reference Egle, D.M., and Bray, D.E., Measurement of acoustoelastic and third-order elastic constants for rail steel, J. Acoust. Soc. Am., 1976, vol. 59, no. 3, pp. 741–744.CrossRef Egle, D.M., and Bray, D.E., Measurement of acoustoelastic and third-order elastic constants for rail steel, J. Acoust. Soc. Am., 1976, vol. 59, no. 3, pp. 741–744.CrossRef
21.
go back to reference Zhu, Qimeng, et al., Residual stress measurement and calibration for A7N01 aluminum alloy welded joints by using longitudinal critically refracted (LCR) wave transmission method, J. Mater. Eng. Perform., 2016, vol. 25, no. 10, pp. 1–9.CrossRef Zhu, Qimeng, et al., Residual stress measurement and calibration for A7N01 aluminum alloy welded joints by using longitudinal critically refracted (LCR) wave transmission method, J. Mater. Eng. Perform., 2016, vol. 25, no. 10, pp. 1–9.CrossRef
22.
go back to reference Zhu, Qimeng, et al., Ameliorated longitudinal critically refracted-attenuation velocity method for welding residual stress measurement, J. Mater. Process. Technol., 2017, vol. 246, no. 8, pp. 246–275.CrossRef Zhu, Qimeng, et al., Ameliorated longitudinal critically refracted-attenuation velocity method for welding residual stress measurement, J. Mater. Process. Technol., 2017, vol. 246, no. 8, pp. 246–275.CrossRef
23.
go back to reference Javadi, Yashar, Akhlaghi, M., and Najafabadi, M.A., Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates, Mater. Des., 2013, vol. 45, no. 45, pp. 628–642.CrossRef Javadi, Yashar, Akhlaghi, M., and Najafabadi, M.A., Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates, Mater. Des., 2013, vol. 45, no. 45, pp. 628–642.CrossRef
24.
go back to reference Javadi, Yashar, Sadeghi, S., and Najafabadi, M.A., Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding, Mater. Des., 2014, vol. 55, no. 55, pp. 27–34.CrossRef Javadi, Yashar, Sadeghi, S., and Najafabadi, M.A., Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding, Mater. Des., 2014, vol. 55, no. 55, pp. 27–34.CrossRef
25.
go back to reference Li, Y., Yu, W., Liu, L., Huang, X., Shi, F., Zhang, Y., and Liu, Z., A Novel Method for Evaluating Biaxial Stresses by Ultrasonic Critical Refracted Longitudinal Waves, J. Test. Eval., 2020, vol. 48, no.4, pp.2597–2610. Li, Y., Yu, W., Liu, L., Huang, X., Shi, F., Zhang, Y., and Liu, Z., A Novel Method for Evaluating Biaxial Stresses by Ultrasonic Critical Refracted Longitudinal Waves, J. Test. Eval., 2020, vol. 48, no.4, pp.2597–2610.
26.
go back to reference Kobayashi, Michiaki et al., Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states, Int. J. Plast., 2003, 19, no. 6, pp. 771–804.CrossRef Kobayashi, Michiaki et al., Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states, Int. J. Plast., 2003, 19, no. 6, pp. 771–804.CrossRef
27.
go back to reference Min, X.H., Kato, H., and Narisawa, N., Real-time ultrasonic measurement during tensile testing of aluminum alloys, Mat. Sci. Eng. A, Struct. Mater., 2005, vol.392, pp. 87–93. Min, X.H., Kato, H., and Narisawa, N., Real-time ultrasonic measurement during tensile testing of aluminum alloys, Mat. Sci. Eng. A, Struct. Mater., 2005, vol.392, pp. 87–93.
28.
go back to reference Maurel, Agnès, Pagneux, V., Barra, F., and Lund, F., Interaction between an elastic wave and a single pinned dislocation, Phys. Rev. B., 2005, vol. 72, no. 17, pp. 110–137. Maurel, Agnès, Pagneux, V., Barra, F., and Lund, F., Interaction between an elastic wave and a single pinned dislocation, Phys. Rev. B., 2005, vol. 72, no. 17, pp. 110–137.
29.
go back to reference Kobayashi, M., Analysis of deformation localization based on proposed theory of ultrasonic wave velocity propagating in plastically deformed solids. International Journal of Plasticity, 2010, vol. 26, no. 1, pp. 107–125.CrossRef Kobayashi, M., Analysis of deformation localization based on proposed theory of ultrasonic wave velocity propagating in plastically deformed solids. International Journal of Plasticity, 2010, vol. 26, no. 1, pp. 107–125.CrossRef
30.
go back to reference Muraviev, V.V. et al., Influence of uniaxial extension of C01Mn2Si1 steel samples after heat treatment on the structural noise, Steel Transl., 2016, vol. 46, no. 2, pp. 99–102.CrossRef Muraviev, V.V. et al., Influence of uniaxial extension of C01Mn2Si1 steel samples after heat treatment on the structural noise, Steel Transl., 2016, vol. 46, no. 2, pp. 99–102.CrossRef
31.
go back to reference Yukun, L., Wenguang, Y., Xiusong, H., Li, L., Yanlong, Z., and Furui, S., et al., The law of response of lcr wave in the plastic and elastic deformation in a36 steel, Russ. J. Nondestr. Test., 2018, vol. 54, no. 4, pp. 260–270.CrossRef Yukun, L., Wenguang, Y., Xiusong, H., Li, L., Yanlong, Z., and Furui, S., et al., The law of response of lcr wave in the plastic and elastic deformation in a36 steel, Russ. J. Nondestr. Test., 2018, vol. 54, no. 4, pp. 260–270.CrossRef
Metadata
Title
The Law of Response of Propagation Time and Amplitude of Ultrasonic LCR Wave in the Elastic-Plastic Deformation of X70 Steel
Authors
Hourui Wang
Wenguang Yu
Xi Chen
Dongze Li
Guangzhi Wang
ZeXin Wang
Kaihong Wang
Xin Qiao
Boyu Tian
Shaobo Wang
Zhenjiang Yang
Publication date
01-02-2021
Publisher
Pleiades Publishing
Published in
Russian Journal of Nondestructive Testing / Issue 2/2021
Print ISSN: 1061-8309
Electronic ISSN: 1608-3385
DOI
https://doi.org/10.1134/S106183092102011X

Other articles of this Issue 2/2021

Russian Journal of Nondestructive Testing 2/2021 Go to the issue

Premium Partners