Skip to main content
Top
Published in: Physics of Metals and Metallography 8/2022

01-08-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Magnetic Prehystory and Stress-Impedance Effect in Amorphous CoFeNbSiB Wires

Authors: D. A. Bukreev, M. S. Derevyanko, D. N. Golubev, A. A. Moiseev, A. V. Semirov

Published in: Physics of Metals and Metallography | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of tensile mechanical stresses and axial magnetic field on the impedance of amorphous Co66Fe4Nb2.5Si12.5B15 wires premagnetized by a circular direct-current magnetic field has been studied. Preliminary circular magnetization leads to appreciable changes in the impedance of wires, and the effect of tensile mechanical stresses and axial magnetic field return the impedance to its initial values. The application of the revealed regularities for the creation of memory strain sensors is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef
2.
go back to reference R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef
3.
go back to reference R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef
4.
go back to reference J. P. Sinnecker, P. Tiberto, G. V. Kurlyandskaya, E. H. C. P. Sinnecker, M. Vazquez, and A. Hernando, “Hysteretic giant magneto impedance,” J. Appl. Phys. 8, 5814–5816 (1998).CrossRef J. P. Sinnecker, P. Tiberto, G. V. Kurlyandskaya, E. H. C. P. Sinnecker, M. Vazquez, and A. Hernando, “Hysteretic giant magneto impedance,” J. Appl. Phys. 8, 5814–5816 (1998).CrossRef
5.
go back to reference M. Vázquez, J. P. Sinnecker, and G. V. Kurlyandskaya, “Hysteretic behavior and anisotropy fields in the magneto-impedance effect,” Mater. Sci. Forum 302–303, 209–218 (1999).CrossRef M. Vázquez, J. P. Sinnecker, and G. V. Kurlyandskaya, “Hysteretic behavior and anisotropy fields in the magneto-impedance effect,” Mater. Sci. Forum 302–303, 209–218 (1999).CrossRef
6.
go back to reference L. C. C. Arzuza, F. Béron, and K. R. Pirota, “High-frequency GMI hysteresis effect analysis by first-order reversal curve (FORC) method,” J. Magn. Magn. Mater. 534, 168008 (2021).CrossRef L. C. C. Arzuza, F. Béron, and K. R. Pirota, “High-frequency GMI hysteresis effect analysis by first-order reversal curve (FORC) method,” J. Magn. Magn. Mater. 534, 168008 (2021).CrossRef
7.
go back to reference M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, “Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications,” Sci. Rep. 6, 36180 (2016).CrossRef M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, “Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications,” Sci. Rep. 6, 36180 (2016).CrossRef
8.
go back to reference J. J. Freijo, A. Hernando, M. Vázquez, A. Méndez, and V. R. Ramanan, “Exchange biasing in ferromagnetic amorphous wires: A controllable micromagnetic configuration,” Appl. Phys. Lett. 74, 1305–1307 (1999).CrossRef J. J. Freijo, A. Hernando, M. Vázquez, A. Méndez, and V. R. Ramanan, “Exchange biasing in ferromagnetic amorphous wires: A controllable micromagnetic configuration,” Appl. Phys. Lett. 74, 1305–1307 (1999).CrossRef
9.
go back to reference D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, V. O. Kudryavtcev, and A. V. Semirov, “Influence of the magnetic prehistory of amorphous magnetically soft wires on their electrical impedance,” Sens. Actuators, A 303, 111669 (2020).CrossRef D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, V. O. Kudryavtcev, and A. V. Semirov, “Influence of the magnetic prehistory of amorphous magnetically soft wires on their electrical impedance,” Sens. Actuators, A 303, 111669 (2020).CrossRef
10.
go back to reference G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovsky, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovsky, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef
11.
go back to reference Z. Yang, A. A. Chlenova, E. V. Golubeva, S. O. Volchkov, P. Guo, S. V. Shcherbinin, and G. V. Kurlyandskaya, “Magnetoimpedance effect in the ribbon-based patterned soft ferromagnetic meander-shaped elements for sensor application,” Sensors 19, 2468 (2019).CrossRef Z. Yang, A. A. Chlenova, E. V. Golubeva, S. O. Volchkov, P. Guo, S. V. Shcherbinin, and G. V. Kurlyandskaya, “Magnetoimpedance effect in the ribbon-based patterned soft ferromagnetic meander-shaped elements for sensor application,” Sensors 19, 2468 (2019).CrossRef
12.
go back to reference N. A. Buznikov and G. V. Kurlyandskaya, “A Model for the magnetoimpedance effect in non-symmetric nanostructured multilayered films with ferrogel coverings,” Sensors 21, 5151 (2021).CrossRef N. A. Buznikov and G. V. Kurlyandskaya, “A Model for the magnetoimpedance effect in non-symmetric nanostructured multilayered films with ferrogel coverings,” Sensors 21, 5151 (2021).CrossRef
13.
go back to reference M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter 7, 115–120 (1995). M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter 7, 115–120 (1995).
14.
go back to reference P. Gazda, M. Nowicki, and R. Szewczyk, “Comparison of stress-impedance effect in amorphous ribbons with positive and negative magnetostriction,” Materials 12, 275 (2019).CrossRef P. Gazda, M. Nowicki, and R. Szewczyk, “Comparison of stress-impedance effect in amorphous ribbons with positive and negative magnetostriction,” Materials 12, 275 (2019).CrossRef
15.
go back to reference D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, G. V. Kurlyandskaya, and A. V. Semirov, “Temperature dependence of the impedance of amorphous elastically deformed CoFeSiB ribbons,” Phys. Met. Metallogr. 122, 1075–1080 (2021).CrossRef D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, G. V. Kurlyandskaya, and A. V. Semirov, “Temperature dependence of the impedance of amorphous elastically deformed CoFeSiB ribbons,” Phys. Met. Metallogr. 122, 1075–1080 (2021).CrossRef
16.
go back to reference D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, A. V. Semirov, P. A. Savin, and G. V. Kurlyandskaya, “Magnetoimpedance and stress-impedance effects in amorphous CoFeSiB ribbons at elevated temperatures,” Material 13, 3216 (2020).CrossRef D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, A. V. Semirov, P. A. Savin, and G. V. Kurlyandskaya, “Magnetoimpedance and stress-impedance effects in amorphous CoFeSiB ribbons at elevated temperatures,” Material 13, 3216 (2020).CrossRef
17.
go back to reference K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measure-ments and controls,” Sens. Actuators, A 91, 85–90 (2001).CrossRef K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measure-ments and controls,” Sens. Actuators, A 91, 85–90 (2001).CrossRef
18.
go back to reference A. V. Semirov, A. A. Gavrilyuk, V. O. Kudryavtsev, A. A. Moiseev, D. A. Bukreev, A. L. Semenov, and Z. F. Ushchapovskaya, “The effect of annealing on impedance properties of elastically deformed soft magnetic wires,” Russ. J. Nondestr. Test. 43, 639–642 (2007).CrossRef A. V. Semirov, A. A. Gavrilyuk, V. O. Kudryavtsev, A. A. Moiseev, D. A. Bukreev, A. L. Semenov, and Z. F. Ushchapovskaya, “The effect of annealing on impedance properties of elastically deformed soft magnetic wires,” Russ. J. Nondestr. Test. 43, 639–642 (2007).CrossRef
19.
go back to reference N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, “Theory of giant magneto-impedance effect in amor-phous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater. 185, 159–173 (1998).CrossRef N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, “Theory of giant magneto-impedance effect in amor-phous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater. 185, 159–173 (1998).CrossRef
20.
go back to reference M. Vázquez and A. Hernando, “A soft magnetic wire for sensor applications,” J. Phys. D: Appl. Phys. 29, 939–949 (1996).CrossRef M. Vázquez and A. Hernando, “A soft magnetic wire for sensor applications,” J. Phys. D: Appl. Phys. 29, 939–949 (1996).CrossRef
21.
go back to reference M. Knobel, C. Gómez-Polo, and M. Vázquez, “Evaluation of the linear magnetostriction in amorphous wires using the giant magneto-impedance effect,” J. Magn. Magn. Mater. 160, 243–244 (1996).CrossRef M. Knobel, C. Gómez-Polo, and M. Vázquez, “Evaluation of the linear magnetostriction in amorphous wires using the giant magneto-impedance effect,” J. Magn. Magn. Mater. 160, 243–244 (1996).CrossRef
Metadata
Title
The Magnetic Prehystory and Stress-Impedance Effect in Amorphous CoFeNbSiB Wires
Authors
D. A. Bukreev
M. S. Derevyanko
D. N. Golubev
A. A. Moiseev
A. V. Semirov
Publication date
01-08-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 8/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22080026

Other articles of this Issue 8/2022

Physics of Metals and Metallography 8/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

EBSD Analysis of an Austenitic Cr–Ni Steel Laser Weld