Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Magnetocaloric Effect upon Adiabatic Demagnetization of a Polycrystalline DyNi2 Alloy

Authors: A. S. Kuznetsov, A. V. Mashirov, A. M. Aliev, A. O. Petrov, M. S. Anikin, I. I. Musabirov, A. A. Amirov, I. A. Kon, V. V. Koledov, V. G. Shavrov

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

Direct measurements of the magnetocaloric effect of the DyNi2 alloy are performed under quasi-adiabatic conditions in a temperature range of 15 to 70 K in magnetic fields up to 10 T using a superconducting cryomagnetic system. Results of the measurements show that, in the phase transition temperature range of the DyNi2 alloy, the maximum adiabatic temperature change at a temperature of 46 K in a magnetic field of 10 T is ∆Tad = –6.2 K.
Literature
1.
go back to reference T. Numazawaa, K. Kamiya, T. Utaki, and K. Matsumoto, “Magnetic refrigerator for hydrogen liquefaction,” Supercond. Cryog. 15, 1–8 (2013). CrossRef T. Numazawaa, K. Kamiya, T. Utaki, and K. Matsumoto, “Magnetic refrigerator for hydrogen liquefaction,” Supercond. Cryog. 15, 1–8 (2013). CrossRef
2.
go back to reference J. Park, S. Jeong, and I. Park, “Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation,” Cryogenics 71, 82–89 (2015). CrossRef J. Park, S. Jeong, and I. Park, “Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation,” Cryogenics 71, 82–89 (2015). CrossRef
3.
go back to reference A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef
4.
go back to reference N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, “Caloric and multicaloric effects in oxygen ferroics and multiferroics,” Phys. Solid State 57, 429–441 (2015). CrossRef N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, “Caloric and multicaloric effects in oxygen ferroics and multiferroics,” Phys. Solid State 57, 429–441 (2015). CrossRef
5.
go back to reference K. P. Belov, Magneto-Thermal Phenomena in the Rare-Earth Magnetic (Nauka, Moscow, 1990) [in Russian]. K. P. Belov, Magneto-Thermal Phenomena in the Rare-Earth Magnetic (Nauka, Moscow, 1990) [in Russian].
6.
go back to reference S. A. Nikitin, Magnetic Properties Rare-Earth Metals and Their Alloys (Moscow State Univ., Moscow, 1989) [in Russian]. S. A. Nikitin, Magnetic Properties Rare-Earth Metals and Their Alloys (Moscow State Univ., Moscow, 1989) [in Russian].
7.
go back to reference A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare-earth magnetic materials,” Sov. Phys.-Usp. 32, 649–664 (1989). CrossRef A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare-earth magnetic materials,” Sov. Phys.-Usp. 32, 649–664 (1989). CrossRef
8.
go back to reference V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, “Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition,” Acta Mater. 154, 303–310 (2018). CrossRef V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, “Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition,” Acta Mater. 154, 303–310 (2018). CrossRef
9.
go back to reference J. Ćwik, “Magnetism and magnetocaloric effect in multicomponent Laves-phase compounds: Study and comparative analysis,” J. Solid State Chem. 209, 13–22 (2014). CrossRef J. Ćwik, “Magnetism and magnetocaloric effect in multicomponent Laves-phase compounds: Study and comparative analysis,” J. Solid State Chem. 209, 13–22 (2014). CrossRef
10.
go back to reference R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957–960 (2006). CrossRef R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957–960 (2006). CrossRef
11.
go back to reference E. Stern-Taulats, P. O. Castillo-Villa, L. Mañosa, C. Frontera, S. Pramanick, S. Majumdar, and A. Planes, “Magnetocaloric effect in the low hysteresis Ni–Mn–In metamagnetic shape-memory Heusler alloy,” J. Appl. Phys. 115, 173907 (2014). CrossRef E. Stern-Taulats, P. O. Castillo-Villa, L. Mañosa, C. Frontera, S. Pramanick, S. Majumdar, and A. Planes, “Magnetocaloric effect in the low hysteresis Ni–Mn–In metamagnetic shape-memory Heusler alloy,” J. Appl. Phys. 115, 173907 (2014). CrossRef
12.
go back to reference B. Emre, S. Yüce, E. Stern-Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Mañosa, “Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys,” J. Appl. Phys. 113, 213905 (2013). CrossRef B. Emre, S. Yüce, E. Stern-Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Mañosa, “Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys,” J. Appl. Phys. 113, 213905 (2013). CrossRef
13.
go back to reference J. Ćwik, Yu. S. Koshkid’ko, N. A. de Oliveira, K. Nenkov, A. Hackemer, E. Dilmieva, N. Kolchugina, S. Nikitin, and K. Rogacki, “Magnetocaloric effect in Laves-phase rare-earth compounds with the second-order magnetic phase transition: Estimation of the high-field properties,” Acta Mater. 133, 230–239 (2017). CrossRef J. Ćwik, Yu. S. Koshkid’ko, N. A. de Oliveira, K. Nenkov, A. Hackemer, E. Dilmieva, N. Kolchugina, S. Nikitin, and K. Rogacki, “Magnetocaloric effect in Laves-phase rare-earth compounds with the second-order magnetic phase transition: Estimation of the high-field properties,” Acta Mater. 133, 230–239 (2017). CrossRef
14.
go back to reference A. V. Mashirov, A. P. Kamantsev, E. T. Dil’mieva, Ya. Zvik, V. I. Nizhankovskii, I. S. Tereshina, and V. G. Shavrov, “Analysis of the multifunctional Heusler alloy Ni43Mn37.8In12.2Co7 using an extraction magnetic calorimeter,” Zh. Radioelektron. 12, 9–9 (2014). A. V. Mashirov, A. P. Kamantsev, E. T. Dil’mieva, Ya. Zvik, V. I. Nizhankovskii, I. S. Tereshina, and V. G. Shavrov, “Analysis of the multifunctional Heusler alloy Ni43Mn37.8In12.2Co7 using an extraction magnetic calorimeter,” Zh. Radioelektron. 12, 9–9 (2014).
15.
go back to reference Yu. S. Koshkid’ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D. Kowalska, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, V. I. Valkov, A. V. Golovchan, A. P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionovad, I. V. Shchetinin, et al., “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields,” J. Alloys Compd. 798, 810–819 (2019). CrossRef Yu. S. Koshkid’ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D. Kowalska, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, V. I. Valkov, A. V. Golovchan, A. P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionovad, I. V. Shchetinin, et al., “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields,” J. Alloys Compd. 798, 810–819 (2019). CrossRef
16.
go back to reference E. T. Dilmieva, Yu. S. Koshkid’ko, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Ćwik, V. V. Khovaylo, and B. Grande, “Research of magnetocaloric effect of Ni-Mn-In-Co- based Heusler alloys by the direct method in magnetic fields up to 14 T,” IEEE Trans. Magn. 53 (11), 1–5 (2017). CrossRef E. T. Dilmieva, Yu. S. Koshkid’ko, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Ćwik, V. V. Khovaylo, and B. Grande, “Research of magnetocaloric effect of Ni-Mn-In-Co- based Heusler alloys by the direct method in magnetic fields up to 14 T,” IEEE Trans. Magn. 53 (11), 1–5 (2017). CrossRef
17.
go back to reference A. P. Kamantsev, A. A. Amirov, Yu. S. Koshkid’ko, C. Salazar Mejía, A. V. Mashirov, A. M. Aliev, V. V. Koledov, and V. G. Shavrov, “Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T,” Phys. Solid State 62, 160–163 (2020). CrossRef A. P. Kamantsev, A. A. Amirov, Yu. S. Koshkid’ko, C. Salazar Mejía, A. V. Mashirov, A. M. Aliev, V. V. Koledov, and V. G. Shavrov, “Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T,” Phys. Solid State 62, 160–163 (2020). CrossRef
18.
go back to reference A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Ćwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117, 163903 (2015). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Ćwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117, 163903 (2015). CrossRef
19.
go back to reference T. Gottschall, M. D. Kuz’min, K. P. Skokov, Y. Skourski, M. Fries, O. Gutfleisch, M. Ghorbani Zavareh, D. L. Schlagel, Y. Mudryk, V. Pecharsky, and J. Wosnitza, “Magnetocaloric effect of gadolinium in high magnetic fields,” Phys. Rev. B 99, 134429 (2019). CrossRef T. Gottschall, M. D. Kuz’min, K. P. Skokov, Y. Skourski, M. Fries, O. Gutfleisch, M. Ghorbani Zavareh, D. L. Schlagel, Y. Mudryk, V. Pecharsky, and J. Wosnitza, “Magnetocaloric effect of gadolinium in high magnetic fields,” Phys. Rev. B 99, 134429 (2019). CrossRef
20.
go back to reference T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. G. Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct Δ T ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5, 024013 (2016). CrossRef T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. G. Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct Δ T ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5, 024013 (2016). CrossRef
21.
go back to reference P. J. von Ranke, N. A. de Oliveira, M. V. Tovar Costa, E. P. Nobrega, A. Caldas, and I. G. de Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl 2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226–230, 970–972 (2001). CrossRef P. J. von Ranke, N. A. de Oliveira, M. V. Tovar Costa, E. P. Nobrega, A. Caldas, and I. G. de Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl 2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226–230, 970–972 (2001). CrossRef
22.
go back to reference P. J. Ibarra-Gaytan, C. F. Sánchez-Valdes, J. L. Sánchez Llamazares, P. Álvarez-Alonso, P. Gorria, and J. A. Blanco, “Texture-induced enhancement of the magnetocaloric response in melt-spun DyNi 2 ribbons,” Appl. Phys. 103, 152401 (2013). P. J. Ibarra-Gaytan, C. F. Sánchez-Valdes, J. L. Sánchez Llamazares, P. Álvarez-Alonso, P. Gorria, and J. A. Blanco, “Texture-induced enhancement of the magnetocaloric response in melt-spun DyNi 2 ribbons,” Appl. Phys. 103, 152401 (2013).
23.
go back to reference P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner Jr., “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2, ErAl 2, and DyNi 2,” Phys. Rev. B 58, 12110 (1998). CrossRef P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner Jr., “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2, ErAl 2, and DyNi 2,” Phys. Rev. B 58, 12110 (1998). CrossRef
24.
go back to reference T. Tohei and H. Wada, “Change in the character of magnetocaloric effect with Ni substitution in Ho(Co 1 – xNi x) 2,” J. Magn. Magn. Mater. 280, 101–107 (2004). CrossRef T. Tohei and H. Wada, “Change in the character of magnetocaloric effect with Ni substitution in Ho(Co 1 – xNi x) 2,” J. Magn. Magn. Mater. 280, 101–107 (2004). CrossRef
25.
go back to reference Yu. S. Koshkid’ko, J. Cwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef Yu. S. Koshkid’ko, J. Cwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef
26.
go back to reference M. Ghahremani, H. M. Seyoum, H. ElBidweihy, E. Della Torre, and L. H. Bennett, “Adiabatic magnetocaloric temperature change in polycrystalline gadolinium—A new approach highlighting reversibility,” AIP Adv. 2, 032149 (2012). CrossRef M. Ghahremani, H. M. Seyoum, H. ElBidweihy, E. Della Torre, and L. H. Bennett, “Adiabatic magnetocaloric temperature change in polycrystalline gadolinium—A new approach highlighting reversibility,” AIP Adv. 2, 032149 (2012). CrossRef
Metadata
Title
The Magnetocaloric Effect upon Adiabatic Demagnetization of a Polycrystalline DyNi2 Alloy
Authors
A. S. Kuznetsov
A. V. Mashirov
A. M. Aliev
A. O. Petrov
M. S. Anikin
I. I. Musabirov
A. A. Amirov
I. A. Kon
V. V. Koledov
V. G. Shavrov
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2204007X