Skip to main content
Top
Published in:

01-09-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Materials Science of Modern Technical Superconducting Materials

Authors: A. S. Tsapleva, I. M. Abdyukhanov, V. I. Pantsyrnyi, M. V. Alekseev, D. N. Rakov

Published in: Physics of Metals and Metallography | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this review, we consider the current state of development of both low-temperature superconductors based on Nb3Sn and high-temperature superconductors. The effect of the preparation method and the composition of alloying elements on the microstructure of the superconducting layer and the current-carrying capacity of superconductors based on Nb3Sn and high-temperature superconductors of the second generation based on yttrium and bismuth cuprates, magnesium diboride, and iron-containing compounds is analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, “Superconductivity of Nb3Sn,” Phys. Rev. 95, 1435 (1954).CrossRef B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, “Superconductivity of Nb3Sn,” Phys. Rev. 95, 1435 (1954).CrossRef
2.
go back to reference B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, “High-temperature superconductors, the first ternary system,” Science 175, 1465–1466 (1972).CrossRef B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, “High-temperature superconductors, the first ternary system,” Science 175, 1465–1466 (1972).CrossRef
3.
go back to reference A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, “Superconductivity at 18 K in potassium-doped C60,” Nature 350, 600–601 (1991).CrossRef A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, “Superconductivity at 18 K in potassium-doped C60,” Nature 350, 600–601 (1991).CrossRef
4.
go back to reference K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Diederich, and R. Whetten, “Critical magnetic fields in the superconducting state of K3C60,, Rhys. Rev. Lett. 67, 271–274 (1991).CrossRef K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Diederich, and R. Whetten, “Critical magnetic fields in the superconducting state of K3C60,, Rhys. Rev. Lett. 67, 271–274 (1991).CrossRef
5.
go back to reference V. Buntar, M. Riccò, L. Cristofolini, H. W. Weber, and F. Bolzoni, “Critical fields of the superconducting fullerene RbCs2C60,, Phys. Rev. B: Condens. Matter 52 (6), 4432–4437 (1995).CrossRef V. Buntar, M. Riccò, L. Cristofolini, H. W. Weber, and F. Bolzoni, “Critical fields of the superconducting fullerene RbCs2C60,, Phys. Rev. B: Condens. Matter 52 (6), 4432–4437 (1995).CrossRef
6.
go back to reference J. Xing, Sh. Li, X. Ding, H. Yang, and H.-H. Wen, “Superconductivity appears in the vicinity of semiconducting-like behavior in CeO1 – xFxBiS2,” Phys. Rev. B 86 (21), 214518 (2012).CrossRef J. Xing, Sh. Li, X. Ding, H. Yang, and H.-H. Wen, “Superconductivity appears in the vicinity of semiconducting-like behavior in CeO1 – xFxBiS2,” Phys. Rev. B 86 (21), 214518 (2012).CrossRef
7.
go back to reference J. C. Bednorz and K. A. Müller, “Possible High Tc Superconductivity in the Ba–La–Cu–O system,” Condens. Matter 64, 189–193 (1986). J. C. Bednorz and K. A. Müller, “Possible High Tc Superconductivity in the Ba–La–Cu–O system,” Condens. Matter 64, 189–193 (1986).
8.
go back to reference N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature, 410, 63–64 (2001).CrossRef N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature, 410, 63–64 (2001).CrossRef
9.
go back to reference Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1 – xFx]FeAs,” Europhys. Lett. 82 (5), 57002 (2008).CrossRef Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1 – xFx]FeAs,” Europhys. Lett. 82 (5), 57002 (2008).CrossRef
10.
go back to reference C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. A. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, “Thorium-doping-induced superconductivity up to 56 K in Gd1 – xThxFeAsO,” Europhys. Lett. 83 (6), 67006 (2008).CrossRef C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. A. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, “Thorium-doping-induced superconductivity up to 56 K in Gd1 – xThxFeAsO,” Europhys. Lett. 83 (6), 67006 (2008).CrossRef
11.
go back to reference F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14262–14264 (2008).CrossRef F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14262–14264 (2008).CrossRef
13.
go back to reference M. Parizh, Y. Lvovsky, and M. Sumption, “Conductors for commercial MRI magnets beyond NbTi: requirements and challenges,” Supercond. Sci. Technol. 30 (1), 014007 (2016).CrossRef M. Parizh, Y. Lvovsky, and M. Sumption, “Conductors for commercial MRI magnets beyond NbTi: requirements and challenges,” Supercond. Sci. Technol. 30 (1), 014007 (2016).CrossRef
16.
go back to reference Ch. Yukai, T. Jingyu, W. Lijiao, Zh. Linhao, Y. Jianquan, and X. Qingjin, “SPPC Status,” HK IAS HEP Conference (2019). Ch. Yukai, T. Jingyu, W. Lijiao, Zh. Linhao, Y. Jianquan, and X. Qingjin, “SPPC Status,” HK IAS HEP Conference (2019).
17.
go back to reference X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International Particle Accelerator Conference (Melbourne, Australia, 2019). X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International Particle Accelerator Conference (Melbourne, Australia, 2019).
18.
go back to reference L. R. Motowidlo and G. M. Ozeryansky, “A new PIT Nb3Sn conductor for high magnetic field applications,” IEEE Trans. Appl. Supercond. 18 (2), 1001–1004 (2008).CrossRef L. R. Motowidlo and G. M. Ozeryansky, “A new PIT Nb3Sn conductor for high magnetic field applications,” IEEE Trans. Appl. Supercond. 18 (2), 1001–1004 (2008).CrossRef
20.
go back to reference H. Kurahashi, K. Itoh, S. Matsumoto, T. Kiyoshi, H. Wada, Y. Murakami, H. Yasunaka, S. Hayashi, and Y. Otani, “Effect of third-element additions on the upper critical field of bronze-processed Nb3Sn,” IEEE Trans. Appl. Supercond. 15 (2), 3385–3388 (2005).CrossRef H. Kurahashi, K. Itoh, S. Matsumoto, T. Kiyoshi, H. Wada, Y. Murakami, H. Yasunaka, S. Hayashi, and Y. Otani, “Effect of third-element additions on the upper critical field of bronze-processed Nb3Sn,” IEEE Trans. Appl. Supercond. 15 (2), 3385–3388 (2005).CrossRef
21.
go back to reference A. Shikov, A. Nikulin, V. Pantsyrnyi, A. Vorobieva, G. Vedernikov, A. Silaev, E. Dergunova, S. Soudiev, and I. Akimov, “Russian superconducting materials for magnet systems of fusion reactors,” J. Nucl. Mater. 283–287, Part 2, 968–972 (2000).CrossRef A. Shikov, A. Nikulin, V. Pantsyrnyi, A. Vorobieva, G. Vedernikov, A. Silaev, E. Dergunova, S. Soudiev, and I. Akimov, “Russian superconducting materials for magnet systems of fusion reactors,” J. Nucl. Mater. 283287, Part 2, 968–972 (2000).CrossRef
22.
go back to reference L. V. Potanina, A. K. Shikov, G. P. Vedernikov, A. E. Vorobieva, V. I. Pantsyrnyi, I. N. Gubkin, A. G. Sylaev, E. I. Plashkin, E. A. Dergunova, and S. V. Soudjev, “Recent progress of low temperature superconducting materials at Bochvar Institute,” Phys. C 386 (15), 390–393 (2003).CrossRef L. V. Potanina, A. K. Shikov, G. P. Vedernikov, A. E. Vorobieva, V. I. Pantsyrnyi, I. N. Gubkin, A. G. Sylaev, E. I. Plashkin, E. A. Dergunova, and S. V. Soudjev, “Recent progress of low temperature superconducting materials at Bochvar Institute,” Phys. C 386 (15), 390–393 (2003).CrossRef
24.
go back to reference W. L. Neijmeijer and B. H. Kolster, “The ternary-system Nb–Sn–Cu at 675°C,” Int. J. Mater. Res. 78 (10), 730–737 (1987).CrossRef W. L. Neijmeijer and B. H. Kolster, “The ternary-system Nb–Sn–Cu at 675°C,” Int. J. Mater. Res. 78 (10), 730–737 (1987).CrossRef
25.
go back to reference B. E. Vishal Ryan Nazareth, “Characterization of the interdiffusion microstructure A15 layer growth and stoichiometry in tube-type Nb3Sn composites,” A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University, 2008, p. 92. B. E. Vishal Ryan Nazareth, “Characterization of the interdiffusion microstructure A15 layer growth and stoichiometry in tube-type Nb3Sn composites,” A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University, 2008, p. 92.
26.
go back to reference E. A. Dergunova, I. A. Karateev, A. L. Vasil’ev, K. A. Mareev, M. O. Kurilkin, A. S. Tsapleva, I. M. Abdyukhanov, M. V. Alekseev, and A. V. Lomov, “Study of the specific features of kinetics formation and structure of the superconducting Nb3Sn phase in technical superconductors,” Crystallogr. Rep. 64 (2), 252–259 (2019).CrossRef E. A. Dergunova, I. A. Karateev, A. L. Vasil’ev, K. A. Mareev, M. O. Kurilkin, A. S. Tsapleva, I. M. Abdyukhanov, M. V. Alekseev, and A. V. Lomov, “Study of the specific features of kinetics formation and structure of the superconducting Nb3Sn phase in technical superconductors,” Crystallogr. Rep. 64 (2), 252–259 (2019).CrossRef
27.
go back to reference E. Yu. Klimenko, V. S. Kruglov, N. N. Martovetskii, I. V. Moskalenko, S. I. Novikov, N. A. Chernoplekov, V. P. Kosenko, V. E. Kutnii, V. V. Pronevich, P. I. Slobodchikov, V. F. Gogulya, I. I. Davydov, I. B. Kalinin, V. A. Kovaleva, A. D. Nikulin, V. Ya. Fil’kin, V. V. Shestakov, A. K. Shikov, G. G. Arzumanyan, G. P. Kazanchyan, and V. A. Kazarov, “Superconducting wire for toroidal magnet T-15,” Atomn. Energiya 63, 248–251 (1987). E. Yu. Klimenko, V. S. Kruglov, N. N. Martovetskii, I. V. Moskalenko, S. I. Novikov, N. A. Chernoplekov, V. P. Kosenko, V. E. Kutnii, V. V. Pronevich, P. I. Slobodchikov, V. F. Gogulya, I. I. Davydov, I. B. Kalinin, V. A. Kovaleva, A. D. Nikulin, V. Ya. Fil’kin, V. V. Shestakov, A. K. Shikov, G. G. Arzumanyan, G. P. Kazanchyan, and V. A. Kazarov, “Superconducting wire for toroidal magnet T-15,” Atomn. Energiya 63, 248–251 (1987).
28.
go back to reference R. Flükiger, D. Uglietti, C. Senatore, and F. Buta, “Microstructure, composition and critical current density of superconducting Nb3Sn wires,” Cryogenics 48, 293–307 (2008).CrossRef R. Flükiger, D. Uglietti, C. Senatore, and F. Buta, “Microstructure, composition and critical current density of superconducting Nb3Sn wires,” Cryogenics 48, 293–307 (2008).CrossRef
29.
go back to reference V. Pantsyrny, A. Shikov, and A. Vorobieva, “Nb3Sn material development in Russia,” Cryogenics 48, 354–370 (2008).CrossRef V. Pantsyrny, A. Shikov, and A. Vorobieva, “Nb3Sn material development in Russia,” Cryogenics 48, 354–370 (2008).CrossRef
30.
go back to reference A. Shikov, V. Pantsyrny, A. Vorobieva, E. Dergunova, L. Vogdaev, N. Kozlenkova, K. Mareev, V. Tronza, V. Sytnikov, A. Taran, and A. Rychagov, “Development of the bronze strand of TF Conductor sample for testing in SULTAN facility,” IEEE Trans. Appl. Supercond. 19 (3), 1466–1469 (2009).CrossRef A. Shikov, V. Pantsyrny, A. Vorobieva, E. Dergunova, L. Vogdaev, N. Kozlenkova, K. Mareev, V. Tronza, V. Sytnikov, A. Taran, and A. Rychagov, “Development of the bronze strand of TF Conductor sample for testing in SULTAN facility,” IEEE Trans. Appl. Supercond. 19 (3), 1466–1469 (2009).CrossRef
31.
go back to reference I. M. Abdyukhanov and N. V. Konovalova, “Study of the microstructure and mechanical properties of bronze with an increased to 16 wt. % content of Sn used for Nb3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 3, 15–25 (2019). I. M. Abdyukhanov and N. V. Konovalova, “Study of the microstructure and mechanical properties of bronze with an increased to 16 wt. % content of Sn used for Nb3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 3, 15–25 (2019).
32.
go back to reference D. V. Kudashov, H. R. Muller, and R. Zauter, “Macro and micro structure of spray formed tin_bronze,” in Continuous Casting: Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals (Wiley–VCH, Weinheim, 2006), pp. 256–264. D. V. Kudashov, H. R. Muller, and R. Zauter, “Macro and micro structure of spray formed tin_bronze,” in Continuous Casting: Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals (Wiley–VCH, Weinheim, 2006), pp. 256–264.
33.
go back to reference I. L. Deryagina, E. N. Popova, S. V. Sudareva, E. P. Romanov, L. V. Elokhina, E. A. Dergunova, A. E. Vorob’eva, and I. M. Abdyukhanov, “Structure of a titanium-alloyed high-tin bronze obtained by the osprey method,” Phys. Met. Metallogr. 110, 162–174 (2010).CrossRef I. L. Deryagina, E. N. Popova, S. V. Sudareva, E. P. Romanov, L. V. Elokhina, E. A. Dergunova, A. E. Vorob’eva, and I. M. Abdyukhanov, “Structure of a titanium-alloyed high-tin bronze obtained by the osprey method,” Phys. Met. Metallogr. 110, 162–174 (2010).CrossRef
35.
go back to reference A. S. Tsapleva, A. E. Vorob’eva, I. M. Abdyukhanov, E. A. Dergunova, K. A. Mareev, and M. N. Nasibulin, “Study of Nb3Sn superconductors for strong magnetic fields,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 2, 16–24 (2014). A. S. Tsapleva, A. E. Vorob’eva, I. M. Abdyukhanov, E. A. Dergunova, K. A. Mareev, and M. N. Nasibulin, “Study of Nb3Sn superconductors for strong magnetic fields,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 2, 16–24 (2014).
36.
go back to reference A. Ballarino and L. Bottura, “Targets for R&D on Nb3Sn conductor for high energy physics,” IEEE Trans. Appl. Supercond. 25 (3), 6000906 (2015).CrossRef A. Ballarino and L. Bottura, “Targets for R&D on Nb3Sn conductor for high energy physics,” IEEE Trans. Appl. Supercond. 25 (3), 6000906 (2015).CrossRef
37.
go back to reference M. Suenaga, D. O. Welch, R. L. Sabatini, O. F. Kramer, and S. Okuda, “Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of ‘‘bulk’’ pure and alloyed Nb3Sn produced by the bronze process,” J. Appl. Phys. 59 (3), 840 (2015). https://doi.org/10.1063/1.336607CrossRef M. Suenaga, D. O. Welch, R. L. Sabatini, O. F. Kramer, and S. Okuda, “Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of ‘‘bulk’’ pure and alloyed Nb3Sn produced by the bronze process,” J. Appl. Phys. 59 (3), 840 (2015). https://​doi.​org/​10.​1063/​1.​336607CrossRef
38.
go back to reference M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, “Superconducting properties of (Nb,Ti)3Sn wires fabricated by the bronze process,” in Advances in Cryogenic Engineering, Ed. by R. P. Reed and A. F. Clark (Plenum, New York, 1982), vol. 28, p. 379. M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, “Superconducting properties of (Nb,Ti)3Sn wires fabricated by the bronze process,” in Advances in Cryogenic Engineering, Ed. by R. P. Reed and A. F. Clark (Plenum, New York, 1982), vol. 28, p. 379.
39.
go back to reference A. K. Shikov, V. I. Panstsyrnyi, A. V. Vorob’eva, E. A. Dergunova, S. V. Sud’ev, K. A. Mareev, N. A. Belyakov, I. M. Abdyukhanov, and V. V. Sergeev, “Microstructure and properties of Nb3Sn superconductors for international thermonuclear experimental reactor,” Met. Sci. Heat Treat. 46 (11–12), 504–513 (2004).CrossRef A. K. Shikov, V. I. Panstsyrnyi, A. V. Vorob’eva, E. A. Dergunova, S. V. Sud’ev, K. A. Mareev, N. A. Belyakov, I. M. Abdyukhanov, and V. V. Sergeev, “Microstructure and properties of Nb3Sn superconductors for international thermonuclear experimental reactor,” Met. Sci. Heat Treat. 46 (11–12), 504–513 (2004).CrossRef
40.
go back to reference I. M. Abdyukhanov, A. E. Vorobyeva, N. A. Beliakov, E. Dergunova, K. Mareev, V. Lomaev, N. V. Tractirnikova, R. Aliev, and A. Shikov, “Production of Nb3Sn bronze route strands with high critical current and their study,” IEEE Trans. Appl. Supercond. 22 (3), 6000404 (2012). https://doi.org/10.1109/TASC.2012.2187320CrossRef I. M. Abdyukhanov, A. E. Vorobyeva, N. A. Beliakov, E. Dergunova, K. Mareev, V. Lomaev, N. V. Tractirnikova, R. Aliev, and A. Shikov, “Production of Nb3Sn bronze route strands with high critical current and their study,” IEEE Trans. Appl. Supercond. 22 (3), 6000404 (2012). https://​doi.​org/​10.​1109/​TASC.​2012.​2187320CrossRef
41.
go back to reference I. L. Deryagina, E. N. Popova, E. P. Romanov, E. A. Dergunova, A. E. Vorobyeva, and S. M. Balaev, “Evolution of the nanocrystalline structure of Nb3Sn superconducting layers upon two-stage annealing of Nb/Cu-Sn composites alloyed with titanium,” Phys. Met. Metallogr. 113 (4), 391–405 (2012).CrossRef I. L. Deryagina, E. N. Popova, E. P. Romanov, E. A. Dergunova, A. E. Vorobyeva, and S. M. Balaev, “Evolution of the nanocrystalline structure of Nb3Sn superconducting layers upon two-stage annealing of Nb/Cu-Sn composites alloyed with titanium,” Phys. Met. Metallogr. 113 (4), 391–405 (2012).CrossRef
42.
go back to reference E. Dergunova, A. Vorobyeva, I. Abdyukhanov, K. Mareev, and S. Balaev, “The study of Nb3Sn phase content and structure dependence on the way of Ti doping in superconductorsby bronze route,” Phys. Proc. 36, 1510–1515 (2015). E. Dergunova, A. Vorobyeva, I. Abdyukhanov, K. Mareev, and S. Balaev, “The study of Nb3Sn phase content and structure dependence on the way of Ti doping in superconductorsby bronze route,” Phys. Proc. 36, 1510–1515 (2015).
43.
go back to reference E. Gregory, B. A. Zeitlin, M. Tomsic, T. Pyon, M. D. Sumption, E. W. Collings, E. Barzi, D. R. Dietderich, R. M. Scanlan, A. A. Polyanskii, and P. J. Lee, “Attempts to reduce a.c. losses in high current density internal-tin Nb3Sn,” AIP Conf. Proc. 711, 789 (2004). https://doi.org/10.1063/1.1774643CrossRef E. Gregory, B. A. Zeitlin, M. Tomsic, T. Pyon, M. D. Sumption, E. W. Collings, E. Barzi, D. R. Dietderich, R. M. Scanlan, A. A. Polyanskii, and P. J. Lee, “Attempts to reduce a.c. losses in high current density internal-tin Nb3Sn,” AIP Conf. Proc. 711, 789 (2004). https://​doi.​org/​10.​1063/​1.​1774643CrossRef
44.
go back to reference R. K. Dhaka, Sn and Ti Diffusion, Phase Formation, Stoichiometry, and Superconducting Properties of Internal—Sn-Type Nb3Sn Conductors (Ohio State University, 2007). R. K. Dhaka, Sn and Ti Diffusion, Phase Formation, Stoichiometry, and Superconducting Properties of Internal—Sn-Type Nb3Sn Conductors (Ohio State University, 2007).
45.
go back to reference J. Parrell, The (Challenges to) Industrialization of HEP-Grade Nb 3 Sn and BSCCO-2212 (Oxford Superconducting Technology, Carteret, 2014). J. Parrell, The (Challenges to) Industrialization of HEP-Grade Nb 3 Sn and BSCCO-2212 (Oxford Superconducting Technology, Carteret, 2014).
46.
go back to reference M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luchman, Superconducting Properties of (Nb,Ta) 3 Sn Wires Fabricated by the Bronze Process (Rep. BNL – 29391, 1979), p. 19. M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luchman, Superconducting Properties of (Nb,Ta) 3 Sn Wires Fabricated by the Bronze Process (Rep. BNL – 29391, 1979), p. 19.
47.
go back to reference J. Parrell, Y. Zhang, M. Field, M. Meinesz, Y. Huang, H. Miao, S. Hong, N. Cheggour, and L. Goodrich, “Internal tin Nb3Sn conductors engineered for Fusion and Particle Accelerator Applications,” IEEE Trans. Appl. Supercond. 19 (3), 2573–2579 (2009).CrossRef J. Parrell, Y. Zhang, M. Field, M. Meinesz, Y. Huang, H. Miao, S. Hong, N. Cheggour, and L. Goodrich, “Internal tin Nb3Sn conductors engineered for Fusion and Particle Accelerator Applications,” IEEE Trans. Appl. Supercond. 19 (3), 2573–2579 (2009).CrossRef
48.
go back to reference Abächerli V., Uglietti D., “The influence of Ti doping methods on the high field performance of (Nb,Ta,Ti)3Sn multifilamentary wires using Osprey bronze,” IEEE Trans. Appl. Supercond. 15, 3482–3485 (2005).CrossRef Abächerli V., Uglietti D., “The influence of Ti doping methods on the high field performance of (Nb,Ta,Ti)3Sn multifilamentary wires using Osprey bronze,” IEEE Trans. Appl. Supercond. 15, 3482–3485 (2005).CrossRef
49.
go back to reference V. Abächerli and F. Butaiet, “Investigation on the effect of Ta additions on Jc and n of (Nb, Ti)3Sn bronze processed multifilamentary wires at high magnetic Fields,” IEEE Trans. Appl. Supercond. 17, 2564–2567 (2007).CrossRef V. Abächerli and F. Butaiet, “Investigation on the effect of Ta additions on Jc and n of (Nb, Ti)3Sn bronze processed multifilamentary wires at high magnetic Fields,” IEEE Trans. Appl. Supercond. 17, 2564–2567 (2007).CrossRef
50.
go back to reference I. M. Abdyukhanov, V. I. Pantsyrny, A. G. Silaev, A. S. Tsapleva, N. V. Konovalova, M. Alekseev, E. Dergunova, K. Mareev, M. Nasibulin, V. Drobyshev, M. Kravtsova, P. A. Lykianov, and M. Krylova, “Study of the superconducting layer microstructure and structure (Nb,Ti,Ta)3Sn bronze trands properties,” IOP Conf. Ser.: J. Phys.: Conf. Ser. 1293, 012040 (2019). https://doi.org/10.1088/1742-6596/1293/1/012040 I. M. Abdyukhanov, V. I. Pantsyrny, A. G. Silaev, A. S. Tsapleva, N. V. Konovalova, M. Alekseev, E. Dergunova, K. Mareev, M. Nasibulin, V. Drobyshev, M. Kravtsova, P. A. Lykianov, and M. Krylova, “Study of the superconducting layer microstructure and structure (Nb,Ti,Ta)3Sn bronze trands properties,” IOP Conf. Ser.: J. Phys.: Conf. Ser. 1293, 012040 (2019). https://​doi.​org/​10.​1088/​1742-6596/​1293/​1/​012040
52.
go back to reference X. Wu, X. Peng, M. D. Sumption, M. Tomsic, E. Gregory, and E. W. Collings, “Ti and Sn diffusion and its influence on phase formation in internal-tin Nb3Sn superconductor strands,” IEEE Trans. Appl. Supercond. 15 (2), 3399–3402 (2005).CrossRef X. Wu, X. Peng, M. D. Sumption, M. Tomsic, E. Gregory, and E. W. Collings, “Ti and Sn diffusion and its influence on phase formation in internal-tin Nb3Sn superconductor strands,” IEEE Trans. Appl. Supercond. 15 (2), 3399–3402 (2005).CrossRef
55.
go back to reference N. Banno, Y. Miyamoto, Zh. Yu, T. Morita, Ts. Yagai, Sh. Nimori, and K. Tachikawa, “Effects of element addition into Cu matrix for IT-processed Nb3Sn wires,” IEEE Trans. Appl. Supercond. 28 (4), 6000905 (2018).CrossRef N. Banno, Y. Miyamoto, Zh. Yu, T. Morita, Ts. Yagai, Sh. Nimori, and K. Tachikawa, “Effects of element addition into Cu matrix for IT-processed Nb3Sn wires,” IEEE Trans. Appl. Supercond. 28 (4), 6000905 (2018).CrossRef
56.
go back to reference T. Spina, A. Ballarino, L. Bottura, Ch. Scheuerlein, and R. Flukiger, “Artificial pinning in Nb3Sn wires,” IEEE Trans. Appl. Supercond. 27 (4), 8001205 (2017).CrossRef T. Spina, A. Ballarino, L. Bottura, Ch. Scheuerlein, and R. Flukiger, “Artificial pinning in Nb3Sn wires,” IEEE Trans. Appl. Supercond. 27 (4), 8001205 (2017).CrossRef
57.
go back to reference D. R. Dietderich, M. Kelman, J. R. Litty, and R. M. Scanlan, “High critical current densities in Nb3Sn films with engineered microstructures – artificial pinning microstructures,” ICMC '97 (Portland, 1997). D. R. Dietderich, M. Kelman, J. R. Litty, and R. M. Scanlan, “High critical current densities in Nb3Sn films with engineered microstructures – artificial pinning microstructures,” ICMC '97 (Portland, 1997).
58.
go back to reference L. E. Rumaner, M. G. Benz, and E. L. Hall, “The role of oxygen and zirconium in the formation and growth of Nb3Sn grains,” Metall. Mater. Trans. A 25, 213–219 (1994).CrossRef L. E. Rumaner, M. G. Benz, and E. L. Hall, “The role of oxygen and zirconium in the formation and growth of Nb3Sn grains,” Metall. Mater. Trans. A 25, 213–219 (1994).CrossRef
59.
go back to reference B. A. Zeitlin, E. Gregory, J. Marte, M. Benz, T. Pyon, R. Scanlan, and D. Dietderich, “Results on mono element internal tin Nb3Sn conductors (MEIT) with Nb7.5Ta and Nb(1Zr + Ox) filaments,” IEEE Trans. Appl. Supercond. 15 (2), 3393–3368 (2005).CrossRef B. A. Zeitlin, E. Gregory, J. Marte, M. Benz, T. Pyon, R. Scanlan, and D. Dietderich, “Results on mono element internal tin Nb3Sn conductors (MEIT) with Nb7.5Ta and Nb(1Zr + Ox) filaments,” IEEE Trans. Appl. Supercond. 15 (2), 3393–3368 (2005).CrossRef
60.
go back to reference X. Xu, M. D. Sumption, and X. Peng, “Internally oxidized Nb3Sn strands with fine grain size and high critical current density,” Adv. Mater. 27, 1346–1350 (2015).CrossRef X. Xu, M. D. Sumption, and X. Peng, “Internally oxidized Nb3Sn strands with fine grain size and high critical current density,” Adv. Mater. 27, 1346–1350 (2015).CrossRef
61.
go back to reference X. Xu, X. Peng, and M. Sumption, Patent No. WO/2015/175064 (US2015/016431) (2015). X. Xu, X. Peng, and M. Sumption, Patent No. WO/2015/175064 (US2015/016431) (2015).
62.
go back to reference X. Xu, X. Peng, M. Sumption, and E. W. Collings, “Recent progress in application of internal oxidation technique in Nb3Sn strands,” IEEE Trans. Appl. Supercond. 27 (4), 6000105 (2015). X. Xu, X. Peng, M. Sumption, and E. W. Collings, “Recent progress in application of internal oxidation technique in Nb3Sn strands,” IEEE Trans. Appl. Supercond. 27 (4), 6000105 (2015).
63.
go back to reference I. M. Abdyukhanov, A. S. Tsapleva, N. V. Konovalova, P. A. Luk’yanov, I. I. Savel’ev, M. V. Alekseev, and D. S. Novosilova, “Influence of zirconium doping on microstructure of the superconducting layer and electro-physical properties of Nb3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater. No. 1, 12–21 (2020). I. M. Abdyukhanov, A. S. Tsapleva, N. V. Konovalova, P. A. Luk’yanov, I. I. Savel’ev, M. V. Alekseev, and D. S. Novosilova, “Influence of zirconium doping on microstructure of the superconducting layer and electro-physical properties of Nb3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater. No. 1, 12–21 (2020).
64.
go back to reference X. Xu, J. Rochester, X. Peng, M. Sumption, and M. Tomsic, “Ternary Nb3Sn superconductors with artificial pinning centers and high upper critical fields,” Supercond. Sci. Technol. 32, 02LT01 (2019). X. Xu, J. Rochester, X. Peng, M. Sumption, and M. Tomsic, “Ternary Nb3Sn superconductors with artificial pinning centers and high upper critical fields,” Supercond. Sci. Technol. 32, 02LT01 (2019).
65.
go back to reference Sh. Balachandran, Ch. Tarantini, P. J. Lee, and F. Kametani, Y-F. Su, B. Walker, W. L. Starch, and D. C. Larbalestier, “Beneficial influence of Hf and Zr additions to Nb 4 at % Ta on the vortex pinning of Nb3Sn with and without an O source,” Supercond. Sci. Technol. 32 (4), 044006 (2019).CrossRef Sh. Balachandran, Ch. Tarantini, P. J. Lee, and F. Kametani, Y-F. Su, B. Walker, W. L. Starch, and D. C. Larbalestier, “Beneficial influence of Hf and Zr additions to Nb 4 at % Ta on the vortex pinning of Nb3Sn with and without an O source,” Supercond. Sci. Technol. 32 (4), 044006 (2019).CrossRef
66.
go back to reference V. A. Al’tov, “Nb3Sn multifilamentary wires and tapes for high-field magnetic systems,” Adv. Cryogen. Eng. 42, 521–1487 (1997). V. A. Al’tov, “Nb3Sn multifilamentary wires and tapes for high-field magnetic systems,” Adv. Cryogen. Eng. 42, 521–1487 (1997).
67.
go back to reference N. I. Kozlenkova, I. I. Akimov, D. N. Rakov, and A. K. Shikov, “Multifilamentary conductors based on Bi-2212 HTS-compound,” Proc. Int. Conf. Magnet Technology (MT-15) (Science Press, 1998), pp. 1064–1066. N. I. Kozlenkova, I. I. Akimov, D. N. Rakov, and A. K. Shikov, “Multifilamentary conductors based on Bi-2212 HTS-compound,” Proc. Int. Conf. Magnet Technology (MT-15) (Science Press, 1998), pp. 1064–1066.
68.
go back to reference A. K. Shikov, D. B. Gusakov, D. N. Rakov, V. A. Vargin, I. I. Akimov, E. V. Kotova, M. I. Medvedev, and V. S. Kruglov, “The influence of processing conditions on the structure and critical properties of Bi-2223 composite tapes,” IEEE Trans. Appl. Supercond. 15 (2), 2466–2469 (2005).CrossRef A. K. Shikov, D. B. Gusakov, D. N. Rakov, V. A. Vargin, I. I. Akimov, E. V. Kotova, M. I. Medvedev, and V. S. Kruglov, “The influence of processing conditions on the structure and critical properties of Bi-2223 composite tapes,” IEEE Trans. Appl. Supercond. 15 (2), 2466–2469 (2005).CrossRef
69.
go back to reference T. P. Krinitsina, E. I. Kuznetsova, D. V. Surnin, Yu. V. Blinova, S. V. Sudareva, E. P. Romanov, D. N. Rakov, and Yu. N. Belotelova, “Structure and critical currents of multiple-filament composite superconductors Bi,Pb-2223/Ag,” Phys. Met. Metallogr. 110, 42–51 (2010). https://doi.org/10.1134/S0031918X10070069CrossRef T. P. Krinitsina, E. I. Kuznetsova, D. V. Surnin, Yu. V. Blinova, S. V. Sudareva, E. P. Romanov, D. N. Rakov, and Yu. N. Belotelova, “Structure and critical currents of multiple-filament composite superconductors Bi,Pb-2223/Ag,” Phys. Met. Metallogr. 110, 42–51 (2010). https://​doi.​org/​10.​1134/​S0031918X1007006​9CrossRef
70.
go back to reference A. S. Nikiforov, A. D. Nikulin, V. Ya. Fil’kin, N. V. Shishkov, I. I. Davydov, A. K. Shikov, E. V. Antipova, N. A. Chernoplekov, and E. Yu. Klimenko “ Composite conductors based on superconducting compounds La–sr–Cu–O and Y–Ba–Cu–O, “Atomnaya Energiya 62, 421–422 (1987). A. S. Nikiforov, A. D. Nikulin, V. Ya. Fil’kin, N. V. Shishkov, I. I. Davydov, A. K. Shikov, E. V. Antipova, N. A. Chernoplekov, and E. Yu. Klimenko “ Composite conductors based on superconducting compounds La–sr–Cu–O and Y–Ba–Cu–O, “Atomnaya Energiya 62, 421–422 (1987).
71.
go back to reference A. Goyal, M. P. Paranthaman, and U. Schoop, “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bull. 29 (8), 552–561 (2004).CrossRef A. Goyal, M. P. Paranthaman, and U. Schoop, “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bull. 29 (8), 552–561 (2004).CrossRef
72.
go back to reference M. W. Rupich, X. Li, S. Sathyamurthy, C. L. H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, “Second generation wire development at AMSC,” IEEE Trans. Appl. Supercond. 23 (3), 6601205 (2013).CrossRef M. W. Rupich, X. Li, S. Sathyamurthy, C. L. H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, “Second generation wire development at AMSC,” IEEE Trans. Appl. Supercond. 23 (3), 6601205 (2013).CrossRef
73.
go back to reference V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, “MOCVD-based YBCO-coated conductors,” MRS Bull. 29, 579–582 (2004).CrossRef V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, “MOCVD-based YBCO-coated conductors,” MRS Bull. 29, 579–582 (2004).CrossRef
74.
go back to reference N. Kashima, T. Niwa, S. Nagaya, K. Onabe, T. Saito, T. Muroga, S. Miyata, T. Watanabe, and Y. Yamada, “Long tape processing for coated conductors by multiple-stage CVD method,” Phys. C 412–414, Part 2, 944–947 (2004).CrossRef N. Kashima, T. Niwa, S. Nagaya, K. Onabe, T. Saito, T. Muroga, S. Miyata, T. Watanabe, and Y. Yamada, “Long tape processing for coated conductors by multiple-stage CVD method,” Phys. C 412414, Part 2, 944–947 (2004).CrossRef
75.
go back to reference Y. Ma, “Present status of development of superconducting materials in China,” Supercond. News Forum (SNF), No. 39 (2017). Y. Ma, “Present status of development of superconducting materials in China,” Supercond. News Forum (SNF), No. 39 (2017).
76.
go back to reference A. Usoskin, A. Freyhardt, and C. Herbert, “YBCO-coated conductors manufactured by high-rate pulsed laser deposition,” MRS Bull. 29 (8), 583–589 (2004).CrossRef A. Usoskin, A. Freyhardt, and C. Herbert, “YBCO-coated conductors manufactured by high-rate pulsed laser deposition,” MRS Bull. 29 (8), 583–589 (2004).CrossRef
77.
go back to reference https://www.fujikura.co.jp/eng/products/newbusiness/ superconductors/01/superconductor.pdf. https://www.fujikura.co.jp/eng/products/newbusiness/ superconductors/01/superconductor.pdf.
78.
go back to reference S. Hahakura, K. Fujino, M. Konishi, and K. Ohmatsu, “Development of HoBCO coated conductor by PLD method,” Phys. C 412–414, 931–936 (2004).CrossRef S. Hahakura, K. Fujino, M. Konishi, and K. Ohmatsu, “Development of HoBCO coated conductor by PLD method,” Phys. C 412414, 931–936 (2004).CrossRef
79.
go back to reference L. Jae-Hun, K. Jaemin, L. Hunju, and M. Seung-Hyun RCE-DR, “A novel process for coated conductor fabrication with high performance,” Proc. Conf. “The workshop on Advanced Superconducting Materials and Magnets”, 044018 (2019). L. Jae-Hun, K. Jaemin, L. Hunju, and M. Seung-Hyun RCE-DR, “A novel process for coated conductor fabrication with high performance,” Proc. Conf. “The workshop on Advanced Superconducting Materials and Magnets”, 044018 (2019).
80.
go back to reference https://www.suptech.com/superconducting-wire/. https://www.suptech.com/superconducting-wire/.
81.
82.
go back to reference A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwing, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. E. Pantoja, S. C. Wimbush, N. M. Strickland, and A. Vasiliev, “Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion,” Sci. Rep. 11, 2084 (2021). https://doi.org/10.1038/s41598-021-81559-z A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwing, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. E. Pantoja, S. C. Wimbush, N. M. Strickland, and A. Vasiliev, “Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion,” Sci. Rep. 11, 2084 (2021). https://​doi.​org/​10.​1038/​s41598-021-81559-z
83.
go back to reference W. Hirata, Sh. Muto, Yu. Adachi, T. Yoshida, S. Fujita, K. Kakimoto, Y. Iijima, M. Daibo, and S. Awaji, “Artificial pinning centers-doped RE-based coated conductors,” Fujikura Tech. Rev., 23–28 (2019). W. Hirata, Sh. Muto, Yu. Adachi, T. Yoshida, S. Fujita, K. Kakimoto, Y. Iijima, M. Daibo, and S. Awaji, “Artificial pinning centers-doped RE-based coated conductors,” Fujikura Tech. Rev., 23–28 (2019).
84.
go back to reference Y. Zhang, S. Yamano, and D. Hazelton, “Fukushima Toru REBCO HTS wire manufacturing and continuous development at SuperPower,” IAS-HEP Mini-Workshop on High Temperature Superconducting Materials and Magnets (Hong Kong, 2018). Y. Zhang, S. Yamano, and D. Hazelton, “Fukushima Toru REBCO HTS wire manufacturing and continuous development at SuperPower,” IAS-HEP Mini-Workshop on High Temperature Superconducting Materials and Magnets (Hong Kong, 2018).
85.
go back to reference S. Nariki, S. J. Seo, N. Sakai, and M. Murakami, “Influence of the size of Gd211 starting powder on the critical current density of Gd–Ba–Cu–O bulk superconductor,” Supercond. Sci. Technol. 13, 778–784 (2000).CrossRef S. Nariki, S. J. Seo, N. Sakai, and M. Murakami, “Influence of the size of Gd211 starting powder on the critical current density of Gd–Ba–Cu–O bulk superconductor,” Supercond. Sci. Technol. 13, 778–784 (2000).CrossRef
86.
go back to reference S. Nariki, N. Sakai, and M. Murakami, “Preparation and properties of OCMG-processed Gd–Ba–Cu–O bulk superconductors with very fine Gd211 particles,” Phys. C 357–360, Part 1, 811–813 (2001).CrossRef S. Nariki, N. Sakai, and M. Murakami, “Preparation and properties of OCMG-processed Gd–Ba–Cu–O bulk superconductors with very fine Gd211 particles,” Phys. C 357–360, Part 1, 811–813 (2001).CrossRef
87.
go back to reference I. B. Bobylev, N. A. Zyuzeva, E. I. Kuznetsova, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, “Effect of doping and substitution on the low-temperature decomposition of oxygen-nonstoichiometric Ba2YCu3O7 – d,” Phys. Met. Metallogr. 108, 59–66 (2009).CrossRef I. B. Bobylev, N. A. Zyuzeva, E. I. Kuznetsova, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, “Effect of doping and substitution on the low-temperature decomposition of oxygen-nonstoichiometric Ba2YCu3O7 – d,” Phys. Met. Metallogr. 108, 59–66 (2009).CrossRef
88.
go back to reference K. Yokoyama, R. Igarashi, R. Togasaki, and T. Oka, “Improvement of the trapped field performance of a holed superconducting bulk magnet,” IEEE Trans. Appl. Supercond. 25 (3), 6800804 (2015).CrossRef K. Yokoyama, R. Igarashi, R. Togasaki, and T. Oka, “Improvement of the trapped field performance of a holed superconducting bulk magnet,” IEEE Trans. Appl. Supercond. 25 (3), 6800804 (2015).CrossRef
89.
go back to reference D. Zhou, M. Izumi, T. Fujimoto, Y. Zhang, W. L. Zhou, and K. Xu, “Introducing nanosized pinning centers Into Bulk Gd–Ba–Cu–O by infiltration method,” IEEE Trans. Appl. Supercond. 25 (3), 6800204 (2015).CrossRef D. Zhou, M. Izumi, T. Fujimoto, Y. Zhang, W. L. Zhou, and K. Xu, “Introducing nanosized pinning centers Into Bulk Gd–Ba–Cu–O by infiltration method,” IEEE Trans. Appl. Supercond. 25 (3), 6800204 (2015).CrossRef
90.
go back to reference V. Hardy, A. Wahl, S. Hébert, A. Ruyter, J. Provost, D. Groult, and Ch. Simon, “Accommodation of vortices to tilted line defects in high-Tc superconductors with various electronic anisotropies,” Phys. Rev. B 54, 656–664 (1996).CrossRef V. Hardy, A. Wahl, S. Hébert, A. Ruyter, J. Provost, D. Groult, and Ch. Simon, “Accommodation of vortices to tilted line defects in high-Tc superconductors with various electronic anisotropies,” Phys. Rev. B 54, 656–664 (1996).CrossRef
91.
go back to reference M. Sparing, E. Backen, T. Freudenberg, R. Huhne, B. Rellinghaus, L. Schultz, and B. Holzapfel, “Artificial pinning centres in YBCO thin films induced by substrate decoration with gas-phase-prepared Y2O3 nanoparticles,” Supercond. Sci. Technol. 20, S239 (2007). M. Sparing, E. Backen, T. Freudenberg, R. Huhne, B. Rellinghaus, L. Schultz, and B. Holzapfel, “Artificial pinning centres in YBCO thin films induced by substrate decoration with gas-phase-prepared Y2O3 nanoparticles,” Supercond. Sci. Technol. 20, S239 (2007).
92.
go back to reference F. J. Baca, D. Fisher, R. L. S. Emergo, and J. Z. Wu, “Pore formation and increased critical current density in YBa2Cu3Ox films deposited on a substrate surface modulated by Y2O3 nanoparticles,” Supercond. Sci. Technol. 20, 554 (2007). F. J. Baca, D. Fisher, R. L. S. Emergo, and J. Z. Wu, “Pore formation and increased critical current density in YBa2Cu3Ox films deposited on a substrate surface modulated by Y2O3 nanoparticles,” Supercond. Sci. Technol. 20, 554 (2007).
93.
go back to reference T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, “Addition of nanoparticle dispersions to enhance flux pinning of YBa2Cu3O7 – x superconductors,” Nature 430, 867–870 (2004).CrossRef T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, “Addition of nanoparticle dispersions to enhance flux pinning of YBa2Cu3O7 – x superconductors,” Nature 430, 867–870 (2004).CrossRef
94.
go back to reference T. Aytug, M. Paranthaman, A. A. Gapud, S. Kang, H. M. Christen, K. J. Leonard, P. M. Martin, J. R. Thompson, D. K. Christen, R. Meng, I. Rusakova, C. W. Chu, and T. Johansen, “Enhancement of flux pinning and critical currents in YBa2Cu3O7 – δ films by nanoscale iridium pretreatment of substrate surfaces,” J. Appl. Phys. 98, 114309 (2005). T. Aytug, M. Paranthaman, A. A. Gapud, S. Kang, H. M. Christen, K. J. Leonard, P. M. Martin, J. R. Thompson, D. K. Christen, R. Meng, I. Rusakova, C. W. Chu, and T. Johansen, “Enhancement of flux pinning and critical currents in YBa2Cu3O7 – δ films by nanoscale iridium pretreatment of substrate surfaces,” J. Appl. Phys. 98, 114309 (2005).
95.
go back to reference P. Mikheenko, A. Sarkar, V.-S. Dang, J. L. Tanner, J. S. Abell, and A. Crisan, “c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates,” Phys. C 469, 798 (2009).CrossRef P. Mikheenko, A. Sarkar, V.-S. Dang, J. L. Tanner, J. S. Abell, and A. Crisan, “c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates,” Phys. C 469, 798 (2009).CrossRef
96.
go back to reference T. Aytug, M. Paranthaman, K. J. Leonard, K. Kim, A. O. Ijadoula, Y. Zhang, E. Tuncer, J. R. Thompson, and D. K. Christen, “Enhanced flux pinning and critical currents in YBa2Cu3O7 – δ films by nanoparticle surface decoration: Extension to coated conductor templates,” J. Appl. Phys. 104, 043906 (2008).CrossRef T. Aytug, M. Paranthaman, K. J. Leonard, K. Kim, A. O. Ijadoula, Y. Zhang, E. Tuncer, J. R. Thompson, and D. K. Christen, “Enhanced flux pinning and critical currents in YBa2Cu3O7 – δ films by nanoparticle surface decoration: Extension to coated conductor templates,” J. Appl. Phys. 104, 043906 (2008).CrossRef
97.
go back to reference K. Yamada, M. Mukaida, H. Kai, R. Teranishi, A. Ichinose, R. Kita, S. Kato, S. Horii, Y. Yoshida, K. Matsumoto, and S. Toh, “Transmission electron microscopy characterization of nanorods in BaNb2O6-doped ErBa2Cu3O7 – δ films,” Appl. Phys. Lett. 92, 112503 (2008).CrossRef K. Yamada, M. Mukaida, H. Kai, R. Teranishi, A. Ichinose, R. Kita, S. Kato, S. Horii, Y. Yoshida, K. Matsumoto, and S. Toh, “Transmission electron microscopy characterization of nanorods in BaNb2O6-doped ErBa2Cu3O7 – δ films,” Appl. Phys. Lett. 92, 112503 (2008).CrossRef
98.
go back to reference J. L. MacManus Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. Maley, and D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7 – x + BaZrO3,” Nat. Mater., No. 3, 439–443 (2004). J. L. MacManus Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. Maley, and D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7 – x + BaZrO3,” Nat. Mater., No. 3, 439–443 (2004).
99.
go back to reference A. Goyal, S. Kang, KJ. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, “Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7 – δ films,” Supercond. Sci. Technol. 18, 1533–1538 (2005). A. Goyal, S. Kang, KJ. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, “Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7 – δ films,” Supercond. Sci. Technol. 18, 1533–1538 (2005).
100.
go back to reference Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, and S. Miyata, “Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7 – x coated conductors,” Appl. Phys. Lett. 87, 132502 (2005).CrossRef Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, and S. Miyata, “Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7 – x coated conductors,” Appl. Phys. Lett. 87, 132502 (2005).CrossRef
101.
go back to reference S. Kang, A. Goyal, J. Li, A. Gapud, P. Martin, L. Heatherly, J. Thompson, D. Christen, F. List, M. Paranthaman, and D. Lee, “High-performance high-Tc superconducting wires,” Science 311, 1911–1914 (2006).CrossRef S. Kang, A. Goyal, J. Li, A. Gapud, P. Martin, L. Heatherly, J. Thompson, D. Christen, F. List, M. Paranthaman, and D. Lee, “High-performance high-Tc superconducting wires,” Science 311, 1911–1914 (2006).CrossRef
102.
go back to reference K. Traito, M. Peurla, H. Huhtinen, Yu. P. Stepanov, M. Safonchik, Y. Y. Tse, P. Paturi, and R. Laiho, “Magnetic field dependence of the critical current and the flux pinning mechanism in YBa2Cu3O6 + x films doped with BaZrO3,” Phys. Rev. B 73, 224522 (2006).CrossRef K. Traito, M. Peurla, H. Huhtinen, Yu. P. Stepanov, M. Safonchik, Y. Y. Tse, P. Paturi, and R. Laiho, “Magnetic field dependence of the critical current and the flux pinning mechanism in YBa2Cu3O6 + x films doped with BaZrO3,” Phys. Rev. B 73, 224522 (2006).CrossRef
103.
go back to reference P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, “Incorporation of double artificial pinning centers in YBa2Cu3O7 – δ films,” Phys. C 468, 1631–1634 (2008).CrossRef P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, “Incorporation of double artificial pinning centers in YBa2Cu3O7 – δ films,” Phys. C 468, 1631–1634 (2008).CrossRef
104.
go back to reference M. Peurla, H. Huhtinen, M. A. Shakhov, K. Traito, Yu. P. Stepanov, M. Safonchik, P. Paturi, Y. Y. Tse, R. Palai, and R. Laiho, “Effects of nanocrystalline target and columnar defects on flux pinning in pure and BaZrO3-doped YBa2Cu3O6 + x films in fields up to 30 T,” Phys. Rev. B 75, 184524 (2007).CrossRef M. Peurla, H. Huhtinen, M. A. Shakhov, K. Traito, Yu. P. Stepanov, M. Safonchik, P. Paturi, Y. Y. Tse, R. Palai, and R. Laiho, “Effects of nanocrystalline target and columnar defects on flux pinning in pure and BaZrO3-doped YBa2Cu3O6 + x films in fields up to 30 T,” Phys. Rev. B 75, 184524 (2007).CrossRef
105.
go back to reference P. Paturi, M. Irjala, and H. Huhtinen, “Greatly decreased critical current density anisotropy in YBa2Cu3O6 + x thin films ablated from nanocrystalline and BaZrO3-doped nanocrystalline targets,” J. Appl. Phys. 103, 123907 (2008). P. Paturi, M. Irjala, and H. Huhtinen, “Greatly decreased critical current density anisotropy in YBa2Cu3O6 + x thin films ablated from nanocrystalline and BaZrO3-doped nanocrystalline targets,” J. Appl. Phys. 103, 123907 (2008).
106.
go back to reference S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, “High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering,” Supercond. Sci. Technol. 21, 092001 (2008).CrossRef S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, “High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering,” Supercond. Sci. Technol. 21, 092001 (2008).CrossRef
107.
go back to reference M. Safonchik, K. Traito, S. Tuominen, P. Paturi, H. Huhtinen, and R. Laiho, “Magnetic field dependence of the optimal BaZrO3 concentration in nanostructured YBa2Cu3O7 – δ films,” Supercond. Sci. Technol. 22, 065006 (2009).CrossRef M. Safonchik, K. Traito, S. Tuominen, P. Paturi, H. Huhtinen, and R. Laiho, “Magnetic field dependence of the optimal BaZrO3 concentration in nanostructured YBa2Cu3O7 – δ films,” Supercond. Sci. Technol. 22, 065006 (2009).CrossRef
108.
go back to reference F. J. Baca, P. N. Barnes, R. L. S. Emergo, T. J. Haugan, J. N. Reichart, and J. Z. Wu, “Control of BaZrO3 nanorod alignment in YBa2Cu3O7 − x thin films by microstructural modulation,” Appl. Phys. Lett. 94, 102512 (2009).CrossRef F. J. Baca, P. N. Barnes, R. L. S. Emergo, T. J. Haugan, J. N. Reichart, and J. Z. Wu, “Control of BaZrO3 nanorod alignment in YBa2Cu3O7 − x thin films by microstructural modulation,” Appl. Phys. Lett. 94, 102512 (2009).CrossRef
109.
go back to reference B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7,” Nat. Mater., No. 8, 398–404 (2009). B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7,” Nat. Mater., No. 8, 398–404 (2009).
110.
go back to reference Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. Parans Paranthaman, T. Aytug, A. Goyal, and D. Lee, “Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes,” Appl. Phys. Lett. 94, 062513 (2009).CrossRef Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. Parans Paranthaman, T. Aytug, A. Goyal, and D. Lee, “Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes,” Appl. Phys. Lett. 94, 062513 (2009).CrossRef
111.
go back to reference H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of BaHfO3 doped Gd1Ba2Cu3O7 – δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K),” Supercond. Sci. Technol. 25, 062002 (2012).CrossRef H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of BaHfO3 doped Gd1Ba2Cu3O7 – δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K),” Supercond. Sci. Technol. 25, 062002 (2012).CrossRef
112.
go back to reference K. Matsumoto and P. Mele, “Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors,” Supercond. Sci. Technol. 23, 014001 (2010).CrossRef K. Matsumoto and P. Mele, “Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors,” Supercond. Sci. Technol. 23, 014001 (2010).CrossRef
113.
go back to reference V. Selvamanickam, “Progress in development of high-performance REBCO tapes and wires,” IEEE/CSC & ESAS superconductivity news forum (global edition) (2019). Invited presentation 1-MO-CS-01I. V. Selvamanickam, “Progress in development of high-performance REBCO tapes and wires,” IEEE/CSC & ESAS superconductivity news forum (global edition) (2019). Invited presentation 1-MO-CS-01I.
114.
go back to reference V. Selvamanickam, Y. Chen, X. Xiong, Y. Y. Xie, J. L. Recent, X. Zhang, Y. Qiao, K. P. Lenseth, R. M. Schmidt, A. Rar, D. W. Hazelton, and K. Tekletsadik, “Progress in second-generation HTS conductor scale-up at SuperPower,” IEEE Trans. Appl. Supercond. 17 (2), 3231–3234 (2007).CrossRef V. Selvamanickam, Y. Chen, X. Xiong, Y. Y. Xie, J. L. Recent, X. Zhang, Y. Qiao, K. P. Lenseth, R. M. Schmidt, A. Rar, D. W. Hazelton, and K. Tekletsadik, “Progress in second-generation HTS conductor scale-up at SuperPower,” IEEE Trans. Appl. Supercond. 17 (2), 3231–3234 (2007).CrossRef
115.
116.
go back to reference S. H. Moon, “Coated conductors by RCE-DR: Process details and scale-up issue,” Proc. “Coated ions Workshop 2018” (2018). S. H. Moon, “Coated conductors by RCE-DR: Process details and scale-up issue,” Proc. “Coated ions Workshop 2018” (2018).
117.
go back to reference J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi, S.-I. Yoo, and S.-H. Moon, “RCE-DR, a novel process for coated conductor fabrication with high performance,” Supercond. Sci. Technol. 27 (4), 6603204 (2017). J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi, S.-I. Yoo, and S.-H. Moon, “RCE-DR, a novel process for coated conductor fabrication with high performance,” Supercond. Sci. Technol. 27 (4), 6603204 (2017).
118.
go back to reference J. L. MacManus-Driscoll, M. Bianchetti, A. Kursumovic, G. Kim, W. Jo, H. Wang, J. H. Lee, G. W. Hong, and S. H. Moon, “Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors,” APL Mater. 2, 086103 (2014).CrossRef J. L. MacManus-Driscoll, M. Bianchetti, A. Kursumovic, G. Kim, W. Jo, H. Wang, J. H. Lee, G. W. Hong, and S. H. Moon, “Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors,” APL Mater. 2, 086103 (2014).CrossRef
119.
go back to reference T. Yoshida, A. Ibi, T. Takahashi, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of Eu1Ba2Cu3O7 – δ + BaHfO3 coated conductors with 141 A/cm-w under 3 T at 77 K using the IBAD/PLD process,” Phys. C 504, 42–46 (2014).CrossRef T. Yoshida, A. Ibi, T. Takahashi, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of Eu1Ba2Cu3O7 – δ + BaHfO3 coated conductors with 141 A/cm-w under 3 T at 77 K using the IBAD/PLD process,” Phys. C 504, 42–46 (2014).CrossRef
121.
go back to reference B. Birajdar, V. Braccini, A. Tumino, T. Wenzel, O. Eibl, and G. Grasso, “MgB2 multifilamentary tapes: microstructrure, chemical composition and supercoconducting properties,” Supercond. Sci. Technol. 19, 916 (2006).CrossRef B. Birajdar, V. Braccini, A. Tumino, T. Wenzel, O. Eibl, and G. Grasso, “MgB2 multifilamentary tapes: microstructrure, chemical composition and supercoconducting properties,” Supercond. Sci. Technol. 19, 916 (2006).CrossRef
122.
go back to reference S. Oha, J. H. Kim, Ch. Lee, H. Choi, C-J. Kim, S. X. Dou, M. Rindfleisch, and M. Tomsic, “Field, temperature and strain dependence of the critical current for multi-filamentary MgB2 wire,” Phys. C 468, 1821–1824 (2008).CrossRef S. Oha, J. H. Kim, Ch. Lee, H. Choi, C-J. Kim, S. X. Dou, M. Rindfleisch, and M. Tomsic, “Field, temperature and strain dependence of the critical current for multi-filamentary MgB2 wire,” Phys. C 468, 1821–1824 (2008).CrossRef
124.
go back to reference L. Saglietti, E. Perini, G. Ripamonti, E. Bassani, G. Carcano, G. Giunchi, “Boron purity effects on structural properties of the MgB2 obtained by Mg-reactive liquid infiltration,” IEEE Trans. Appl. Supercond. 19 (3), 2739–2743 (2009).CrossRef L. Saglietti, E. Perini, G. Ripamonti, E. Bassani, G. Carcano, G. Giunchi, “Boron purity effects on structural properties of the MgB2 obtained by Mg-reactive liquid infiltration,” IEEE Trans. Appl. Supercond. 19 (3), 2739–2743 (2009).CrossRef
125.
go back to reference X. Xu, J. H. Kim, W. Yeoh, Y. Zhang, S. X. Dou, “Improved Jc of MgB2 superconductor by ball milling using different media,” Supercond. Sci. Technol. 19 (11), 47–50 (2006).CrossRef X. Xu, J. H. Kim, W. Yeoh, Y. Zhang, S. X. Dou, “Improved Jc of MgB2 superconductor by ball milling using different media,” Supercond. Sci. Technol. 19 (11), 47–50 (2006).CrossRef
126.
go back to reference J. H. Kim, S. Oh, H. Kumakura, A. Matsumoto, H. Yoon-Uk, S. Kyeongse, K. Yong Mook, M. Maeda, M. Rindfleisch, M. Tomsic, C. Seyong, and S. Dou, “Tailored materials for high-performance MgB2 wire,” Adv. Mater. 23, 4942–4946 (2011).CrossRef J. H. Kim, S. Oh, H. Kumakura, A. Matsumoto, H. Yoon-Uk, S. Kyeongse, K. Yong Mook, M. Maeda, M. Rindfleisch, M. Tomsic, C. Seyong, and S. Dou, “Tailored materials for high-performance MgB2 wire,” Adv. Mater. 23, 4942–4946 (2011).CrossRef
127.
go back to reference J. V. Marzik, R. J. Suplinskas, R. H. T. Wike, P. Canfield, D. Finnemore, M. Rindfleisch, J. Margolies, and S. Hannahs, “Plasma synthesized doped B powders for MgB2 superconductors,” Phys. C 423, 83–88 (2005).CrossRef J. V. Marzik, R. J. Suplinskas, R. H. T. Wike, P. Canfield, D. Finnemore, M. Rindfleisch, J. Margolies, and S. Hannahs, “Plasma synthesized doped B powders for MgB2 superconductors,” Phys. C 423, 83–88 (2005).CrossRef
132.
go back to reference A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, and D. C. Larbalestier, “Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes,” J. Appl. Phys. 104, 103908 (2008). https://doi.org/10.1063/1.3021468CrossRef A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, and D. C. Larbalestier, “Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes,” J. Appl. Phys. 104, 103908 (2008). https://​doi.​org/​10.​1063/​1.​3021468CrossRef
134.
go back to reference J. Ma, A. Sun, G. Wei, L. Zheng, G. Yang, and X. Zhang, “Al-doping effects on the structural change of MgB2,” J. Supercond. Nov. Magn. 23, 187–191 (2010).CrossRef J. Ma, A. Sun, G. Wei, L. Zheng, G. Yang, and X. Zhang, “Al-doping effects on the structural change of MgB2,” J. Supercond. Nov. Magn. 23, 187–191 (2010).CrossRef
136.
go back to reference J. Karpinski, N. D. Zhigadlo, G. Schuck, S. M. Kazakov, B. Batlogg, K. Rogacki, R. Puzniak, J. Jun, E. Muller, P. Wagli, R. Gonnelli, D. Daghero, G. A. Ummarino, and V. A. Stepanov, “Al substitution in MgB2 crystals: Influence on superconducting and structural properties,” Phys. Rev. B 71, 174506 (2005). https://doi.org/10.1103/PhysRevB.71.174506CrossRef J. Karpinski, N. D. Zhigadlo, G. Schuck, S. M. Kazakov, B. Batlogg, K. Rogacki, R. Puzniak, J. Jun, E. Muller, P. Wagli, R. Gonnelli, D. Daghero, G. A. Ummarino, and V. A. Stepanov, “Al substitution in MgB2 crystals: Influence on superconducting and structural properties,” Phys. Rev. B 71, 174506 (2005). https://​doi.​org/​10.​1103/​PhysRevB.​71.​174506CrossRef
137.
go back to reference M. R. Cimberle, M. Novak, P. Manfrinetti, and A. Palenzona, “Magnetic characterization of sintered MgB2 samples: effect of substitution or “doping” with Li, Al and Si,” Supercond. Sci. Technol. 15, 43–47 (2002).CrossRef M. R. Cimberle, M. Novak, P. Manfrinetti, and A. Palenzona, “Magnetic characterization of sintered MgB2 samples: effect of substitution or “doping” with Li, Al and Si,” Supercond. Sci. Technol. 15, 43–47 (2002).CrossRef
138.
go back to reference M. Kuhberger and G. Gritzner, “Effects of Sn, Co and Fe on MgB,” Phys. C 370, 39–43 (2002).CrossRef M. Kuhberger and G. Gritzner, “Effects of Sn, Co and Fe on MgB,” Phys. C 370, 39–43 (2002).CrossRef
139.
go back to reference C. Kea, C. H. Chengb, Y. Yanga, Y. Zhang, W. T. Wang, and Y. Zhao, “Flux pinning behavior of MgB2 doped with Fe and Fe2O3 nanowires,” Phys. Proc. 27, 40–43 (2012).CrossRef C. Kea, C. H. Chengb, Y. Yanga, Y. Zhang, W. T. Wang, and Y. Zhao, “Flux pinning behavior of MgB2 doped with Fe and Fe2O3 nanowires,” Phys. Proc. 27, 40–43 (2012).CrossRef
141.
go back to reference J. Dyson, D. Rinaldi, G. Barucca, G. Albertini, S. Sprio, and A. Tampieri, “Flux pinning in Y- and Ag-doped MgB2,” Adv. Mater. Phys. Chem. 5, 426–438 (2015).CrossRef J. Dyson, D. Rinaldi, G. Barucca, G. Albertini, S. Sprio, and A. Tampieri, “Flux pinning in Y- and Ag-doped MgB2,” Adv. Mater. Phys. Chem. 5, 426–438 (2015).CrossRef
142.
go back to reference D. Batalu, Gh. Aldica, M. Burdusel, and P. Badica, “Short review on rare earth and metalloid oxide additions to MgB2 as a candidate superconducting material for medical applications,” Key Eng. Mater. 638, 357–362 (2015).CrossRef D. Batalu, Gh. Aldica, M. Burdusel, and P. Badica, “Short review on rare earth and metalloid oxide additions to MgB2 as a candidate superconducting material for medical applications,” Key Eng. Mater. 638, 357–362 (2015).CrossRef
143.
go back to reference A. Agostino, M. Panetta, P. Volpe, M. Truccato, S. Cagliero, L. Gozzelino, R. Gerbaldo, G. Ghigo, F. Laviano, G. Lopardo, and B. Minetti, “Na substitution effects on MgB2 synthesized with a microwave-assisted technique,” IEEE Trans. Appl. Supercond. 17 (2), 2774–2777 (2007).CrossRef A. Agostino, M. Panetta, P. Volpe, M. Truccato, S. Cagliero, L. Gozzelino, R. Gerbaldo, G. Ghigo, F. Laviano, G. Lopardo, and B. Minetti, “Na substitution effects on MgB2 synthesized with a microwave-assisted technique,” IEEE Trans. Appl. Supercond. 17 (2), 2774–2777 (2007).CrossRef
145.
go back to reference W. X. Li, Y. Li, M. Y. Zhu, R. Chen, X. Xu, W. Yeoh, J. Kim, and S. Dou, “Benzoic acid doping to enhance electromagnetic properties of MgB2 superconductors,” IEEE Trans. Appl. Supercond. 17 (2), 2778–2781 (2007).CrossRef W. X. Li, Y. Li, M. Y. Zhu, R. Chen, X. Xu, W. Yeoh, J. Kim, and S. Dou, “Benzoic acid doping to enhance electromagnetic properties of MgB2 superconductors,” IEEE Trans. Appl. Supercond. 17 (2), 2778–2781 (2007).CrossRef
146.
go back to reference X. Zhang, Y. Ma, Zh. Gao, D. Wang, S. Awaji, G. Nishijima, and K. Watanabe, “Effect of nano-C doping on the critical current density and flux pinning of MgB2 tapes,” IEEE Trans. Appl. Supercond. 17 (2), 2915–2918 (2007).CrossRef X. Zhang, Y. Ma, Zh. Gao, D. Wang, S. Awaji, G. Nishijima, and K. Watanabe, “Effect of nano-C doping on the critical current density and flux pinning of MgB2 tapes,” IEEE Trans. Appl. Supercond. 17 (2), 2915–2918 (2007).CrossRef
147.
go back to reference J. H. Lim, C. M. Lee, K. Won Seog, J. Joo, J. Seung-Boo, L. Young Hee, and K. Chan-Joong, “Fabrication and characterization of the MgB2 bulk superconductors doped by carbon nanotubes,” IEEE Trans. Appl. Supercond. 19 (3), 2767–2770 (2009).CrossRef J. H. Lim, C. M. Lee, K. Won Seog, J. Joo, J. Seung-Boo, L. Young Hee, and K. Chan-Joong, “Fabrication and characterization of the MgB2 bulk superconductors doped by carbon nanotubes,” IEEE Trans. Appl. Supercond. 19 (3), 2767–2770 (2009).CrossRef
148.
go back to reference J. H. Kim, W. K. Yeoh, X. Xu, D. Shi, and S. Dou, “Improvement of upper critical field and critical current density in single walled CNT doped MgB2Fe wires,” IEEE Trans. Appl. Supercond. 17 (2), 2907–2910 (2007).CrossRef J. H. Kim, W. K. Yeoh, X. Xu, D. Shi, and S. Dou, “Improvement of upper critical field and critical current density in single walled CNT doped MgB2Fe wires,” IEEE Trans. Appl. Supercond. 17 (2), 2907–2910 (2007).CrossRef
149.
go back to reference K. S. B. De Silva, X. Xu, W. X. Li, Y. Zhang, M. Rindfleisch, and M. Tomsic, “Improving superconducting properties of MgB2 by graphene doping,” IEEE Trans. Appl. Supercond. 21 (3), 2686–2689 (2011).CrossRef K. S. B. De Silva, X. Xu, W. X. Li, Y. Zhang, M. Rindfleisch, and M. Tomsic, “Improving superconducting properties of MgB2 by graphene doping,” IEEE Trans. Appl. Supercond. 21 (3), 2686–2689 (2011).CrossRef
150.
go back to reference J. M. Parakkandy, M. Shahabuddin, M. Sh. Shah, N. Alzayed, S. A. S. Qaid, N. A. Madhar, S. Ramay, and M. A. Shar, “Effects of glucose doping on the MgB2 superconductors using cheap crystalline boron,” Phys. C 519, 137–141 (2015).CrossRef J. M. Parakkandy, M. Shahabuddin, M. Sh. Shah, N. Alzayed, S. A. S. Qaid, N. A. Madhar, S. Ramay, and M. A. Shar, “Effects of glucose doping on the MgB2 superconductors using cheap crystalline boron,” Phys. C 519, 137–141 (2015).CrossRef
151.
go back to reference H. Ağıl, E. Aksu, and G. Ali, “Role of aniline addition in structural and superconducting properties of MgB2 bulk superconductor,” J. Supercond. Nov. Magn. 30, 2735–2740 (2017).CrossRef H. Ağıl, E. Aksu, and G. Ali, “Role of aniline addition in structural and superconducting properties of MgB2 bulk superconductor,” J. Supercond. Nov. Magn. 30, 2735–2740 (2017).CrossRef
152.
go back to reference S. Okur, M. Kalkanci, M. Yavas, M. Egilmez, L. Ozyuzer, “Microstructural and electrical characterization of Ti and Mg doped Cu-clad MgB2 superconducting wires,” J. Optoelectron. Adv. Mater. 7, 411–414 (2005). S. Okur, M. Kalkanci, M. Yavas, M. Egilmez, L. Ozyuzer, “Microstructural and electrical characterization of Ti and Mg doped Cu-clad MgB2 superconducting wires,” J. Optoelectron. Adv. Mater. 7, 411–414 (2005).
153.
go back to reference Y. Yamada, M. Nakatsuka, and Y. Kato, “Superconducting properties of in situ PIT MgB2 tapes with different ceramic powder,” International cryogenic materials conference—ICMC (2006), pp. 631–638. Y. Yamada, M. Nakatsuka, and Y. Kato, “Superconducting properties of in situ PIT MgB2 tapes with different ceramic powder,” International cryogenic materials conference—ICMC (2006), pp. 631–638.
154.
go back to reference S. X. Dou, J. Horvat, S. Soltanian, X. L. Wang, M. Qin, Z. Shifang, H. Liu, and P. Munroe, “Transport critical current density in Fe-sheathed nano-SiC doped MgB2 wires,” IEEE Trans. Appl. Supercond. 13, 3199–3202 (2002).CrossRef S. X. Dou, J. Horvat, S. Soltanian, X. L. Wang, M. Qin, Z. Shifang, H. Liu, and P. Munroe, “Transport critical current density in Fe-sheathed nano-SiC doped MgB2 wires,” IEEE Trans. Appl. Supercond. 13, 3199–3202 (2002).CrossRef
155.
go back to reference J.-C. Grivel, A. Pitillas, S. Namazkar, A. Alexiou, and O. J. Holte, “Preparation and characterization of MgB2 with Pd, Pt and Re doping,” Phys. C 520, 37–41 (2016).CrossRef J.-C. Grivel, A. Pitillas, S. Namazkar, A. Alexiou, and O. J. Holte, “Preparation and characterization of MgB2 with Pd, Pt and Re doping,” Phys. C 520, 37–41 (2016).CrossRef
160.
go back to reference H. Fujii, H. Kumakura, and K. Togano, “Influence of MgB2 powder quality on the transport properties of Cu-sheathed MgB2 tapes,” Phys. C 363, 237–242 (2001).CrossRef H. Fujii, H. Kumakura, and K. Togano, “Influence of MgB2 powder quality on the transport properties of Cu-sheathed MgB2 tapes,” Phys. C 363, 237–242 (2001).CrossRef
162.
go back to reference S. Jln, H. Mavoorl, and C. Bover, “High critical currents in iron-clad superconducting MgB2 wires,” Nature 411, 563–562 (2001).CrossRef S. Jln, H. Mavoorl, and C. Bover, “High critical currents in iron-clad superconducting MgB2 wires,” Nature 411, 563–562 (2001).CrossRef
163.
go back to reference I. Hušek, P. Kováč, T. Melišek, and L. Kopera, “Thermally stabilized MgB2 composite wires with different barriers,” Cryogenics 51, 550–554 (2011).CrossRef I. Hušek, P. Kováč, T. Melišek, and L. Kopera, “Thermally stabilized MgB2 composite wires with different barriers,” Cryogenics 51, 550–554 (2011).CrossRef
167.
go back to reference E. I. Kuznetsova, S. V. Sudareva, T. P. Krinitsina, Yu. V. Blinova, E. P. Romanov, Yu. N. Akshentsev, M. V. Degtyarev, M. A. Tikhonovskii, and I. F. Kislyak, “Mechanism of the formation and specific features of the structure of massive samples of compound MgB2,” Phys. Met. Metallogr. 115 (2), 175–185 (2014).CrossRef E. I. Kuznetsova, S. V. Sudareva, T. P. Krinitsina, Yu. V. Blinova, E. P. Romanov, Yu. N. Akshentsev, M. V. Degtyarev, M. A. Tikhonovskii, and I. F. Kislyak, “Mechanism of the formation and specific features of the structure of massive samples of compound MgB2,” Phys. Met. Metallogr. 115 (2), 175–185 (2014).CrossRef
168.
go back to reference T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, D. N. Rakov, Yu. N. Belotelova, S. V. Sudareva, M. V. Degtyarev, and E. P. Romanov, “Structure and stability of superconducting core of single-core MgB2/Cu,Nb tube composite with a high critical current,” Phys. Met. Metallogr. 115 (6), 538–546 (2014).CrossRef T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, D. N. Rakov, Yu. N. Belotelova, S. V. Sudareva, M. V. Degtyarev, and E. P. Romanov, “Structure and stability of superconducting core of single-core MgB2/Cu,Nb tube composite with a high critical current,” Phys. Met. Metallogr. 115 (6), 538–546 (2014).CrossRef
169.
go back to reference I. M. Abdyukhanov, A. S. Tsapleva, M. V. Alekseev, and E. A. Zubok, “Heat treatment of MgB2 superconductors with different metal sheaths,” IEEE Trans. Appl. Supercond. 28 (3), 6200504 (2018).CrossRef I. M. Abdyukhanov, A. S. Tsapleva, M. V. Alekseev, and E. A. Zubok, “Heat treatment of MgB2 superconductors with different metal sheaths,” IEEE Trans. Appl. Supercond. 28 (3), 6200504 (2018).CrossRef
170.
go back to reference I. M. Abdyukhanov, A. S. Tsapleva, A. V. Borisov, O. A. Krymskaya, M. G. Isaenkova, and D. K. Figu-rovskii, “Effect of synthesis conditions on the structure and phase composition of magnesium diboride,” Inorg. Mater.: Appl. Res. 10, 162–167 (2019).CrossRef I. M. Abdyukhanov, A. S. Tsapleva, A. V. Borisov, O. A. Krymskaya, M. G. Isaenkova, and D. K. Figu-rovskii, “Effect of synthesis conditions on the structure and phase composition of magnesium diboride,” Inorg. Mater.: Appl. Res. 10, 162–167 (2019).CrossRef
171.
go back to reference I. Abduykhanov, A. Tsapleva, K. Bazaleeva, P. Lykya-nov, M. Alekseev, and A. Potanin, “Microstructure and properties MgB2 superconductors after heat treatment,” IOP Conf. Series: J. Phys.: Conf. Ser. 1134, 012062 (2018). I. Abduykhanov, A. Tsapleva, K. Bazaleeva, P. Lykya-nov, M. Alekseev, and A. Potanin, “Microstructure and properties MgB2 superconductors after heat treatment,” IOP Conf. Series: J. Phys.: Conf. Ser. 1134, 012062 (2018).
172.
go back to reference Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1 – xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130 (11), 3296-7 (2008).CrossRef Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1 – xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130 (11), 3296-7 (2008).CrossRef
173.
go back to reference C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lv, B. Lorenz, K. Sasmal, Z. J. Tang, J. H. Tapp, and Y. Y. Xue, “The synthesis and characterization of LiFeAs and NaFeAs,” Phys. C 469 (9–12), 326–331 (2009).CrossRef C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lv, B. Lorenz, K. Sasmal, Z. J. Tang, J. H. Tapp, and Y. Y. Xue, “The synthesis and characterization of LiFeAs and NaFeAs,” Phys. C 469 (9–12), 326–331 (2009).CrossRef
174.
go back to reference Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, “A new “111” type iron pnictide superconductor LiFeP,” Europhys. Lett. 87 (3), 37004 (2009).CrossRef Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, “A new “111” type iron pnictide superconductor LiFeP,” Europhys. Lett. 87 (3), 37004 (2009).CrossRef
175.
go back to reference G. Just and P. Paufler, “On the coordination of ThCr2Si2 (BaAl4)-type compounds within the field of free parameters,” J. Alloys Compd. 232 (1–2), 1–25 (1996).CrossRef G. Just and P. Paufler, “On the coordination of ThCr2Si2 (BaAl4)-type compounds within the field of free parameters,” J. Alloys Compd. 232 (1–2), 1–25 (1996).CrossRef
176.
go back to reference E. Dagotto, “Colloquium: the unexpected properties of alkali metal iron selenide superconductors,” Rev. Mod. Phys. 85 (2), 849 (2013).CrossRef E. Dagotto, “Colloquium: the unexpected properties of alkali metal iron selenide superconductors,” Rev. Mod. Phys. 85 (2), 849 (2013).CrossRef
177.
go back to reference P. Cheng, B. Shen, G. Mu, X. Y. Zhu, F. Han, B. Zeng, and H. H. Wen, “High Tc superconductivity induced by doping rare-earth elements into CaFeAsF,” Europhys. Lett. 85 (6), 67003 (2009).CrossRef P. Cheng, B. Shen, G. Mu, X. Y. Zhu, F. Han, B. Zeng, and H. H. Wen, “High Tc superconductivity induced by doping rare-earth elements into CaFeAsF,” Europhys. Lett. 85 (6), 67003 (2009).CrossRef
178.
go back to reference A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, “New-Structure-type Fe-based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs),” J. Am. Chem. Soc. 138 (10), 3410–3415 (2016).CrossRef A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, “New-Structure-type Fe-based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs),” J. Am. Chem. Soc. 138 (10), 3410–3415 (2016).CrossRef
179.
go back to reference M. V. Roslova, Doctoral Dissertation (Moscow, 2014). M. V. Roslova, Doctoral Dissertation (Moscow, 2014).
182.
go back to reference D. Contarino, C. Lohnert, D. Johrendt, A. Genovese, C. Bernini, A. Malagoli, and M. Putti, “Development and characterization of P-doped Ba-122 superconducting tapes,” IEEE Trans. Appl. Supercond. 27 (4), 7300504 (2017).CrossRef D. Contarino, C. Lohnert, D. Johrendt, A. Genovese, C. Bernini, A. Malagoli, and M. Putti, “Development and characterization of P-doped Ba-122 superconducting tapes,” IEEE Trans. Appl. Supercond. 27 (4), 7300504 (2017).CrossRef
183.
go back to reference X. Zhang, L. Wang, Y. Qi, D. Wang, Zh. Gao, Zh. Zhang, and Y. Ma, “Effect of sheath materials on the microstructure and superconducting properties of SmO0.7F0.3FeAs wires,” Phys. C 470, 104–108 (2010).CrossRef X. Zhang, L. Wang, Y. Qi, D. Wang, Zh. Gao, Zh. Zhang, and Y. Ma, “Effect of sheath materials on the microstructure and superconducting properties of SmO0.7F0.3FeAs wires,” Phys. C 470, 104–108 (2010).CrossRef
184.
go back to reference Y. Ma, Zh. Gao, Y. Qi, X. Zhang, L. Wang, Zh. Zhang, and D. Wang, “Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method,” Phys. C 469, 651–656 (2009).CrossRef Y. Ma, Zh. Gao, Y. Qi, X. Zhang, L. Wang, Zh. Zhang, and D. Wang, “Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method,” Phys. C 469, 651–656 (2009).CrossRef
185.
go back to reference Y. Ma, Wang. Lei, Y. Qi, Zh. Gao, D. Wang, and X. Zhang, “Development of powder-in-tube processed iron pnictide wires and tapes,” IEEE Trans. Appl. Supercond. 21 (3), 2878–2881 (2011).CrossRef Y. Ma, Wang. Lei, Y. Qi, Zh. Gao, D. Wang, and X. Zhang, “Development of powder-in-tube processed iron pnictide wires and tapes,” IEEE Trans. Appl. Supercond. 21 (3), 2878–2881 (2011).CrossRef
189.
go back to reference Q. Dong, B. Tian, W. Hong, Y. Ma, and Y. Xin, “Critical currents of 100-m class Ag-sheathed Sr0.6K0.4Fe2As2 tape under various temperatures,” Magn. Fields, and Angles, IEEE Trans. Appl. Supercond. 29 (5), 7300705 (2019).CrossRef Q. Dong, B. Tian, W. Hong, Y. Ma, and Y. Xin, “Critical currents of 100-m class Ag-sheathed Sr0.6K0.4Fe2As2 tape under various temperatures,” Magn. Fields, and Angles, IEEE Trans. Appl. Supercond. 29 (5), 7300705 (2019).CrossRef
190.
go back to reference Ch. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, Ch. Dong, Y. Ma, S. Awaji, and K. Watanabe, “Critical current density and microstructure of iron sheathed multifilamentary Sr1 – xKxFe2As2/Ag composite conductors,” J. Appl. Phys. 118, 203909 (2015). https://doi.org/10.1063/1.4936370 Ch. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, Ch. Dong, Y. Ma, S. Awaji, and K. Watanabe, “Critical current density and microstructure of iron sheathed multifilamentary Sr1 – xKxFe2As2/Ag composite conductors,” J. Appl. Phys. 118, 203909 (2015). https://​doi.​org/​10.​1063/​1.​4936370
195.
196.
go back to reference Sh. Liu, Zhe. Cheng, Chao. Yao, Ch. Dong, D. Wang, Huang. He, Li. Liu, G. Xu, Y. Zhu, F. Liu, H. Liu, and Y. Ma, “High critical current density in Cu/Ag composited sheathed Ba0.6K0.4Fe2As2 tapes prepared via hot isostatic pressing,” Supercond. Sci. Technol. 32 (4), 044007 (2019). https://doi.org/10.1088/1361-6668/aaff27CrossRef Sh. Liu, Zhe. Cheng, Chao. Yao, Ch. Dong, D. Wang, Huang. He, Li. Liu, G. Xu, Y. Zhu, F. Liu, H. Liu, and Y. Ma, “High critical current density in Cu/Ag composited sheathed Ba0.6K0.4Fe2As2 tapes prepared via hot isostatic pressing,” Supercond. Sci. Technol. 32 (4), 044007 (2019). https://​doi.​org/​10.​1088/​1361-6668/​aaff27CrossRef
201.
go back to reference V. A. Vlasenko, O. A. Sobolevskii, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. El’tsev, “Systematic study of the pinning of Abrikosov vortices and the vortex liquid–glass phase transition in single crystals BaFe2 – xNixAs,” Pis’ma Zh. Eksp. Teor. Fiz. 107, 121–127 (2018). V. A. Vlasenko, O. A. Sobolevskii, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. El’tsev, “Systematic study of the pinning of Abrikosov vortices and the vortex liquid–glass phase transition in single crystals BaFe2 – xNixAs,” Pis’ma Zh. Eksp. Teor. Fiz. 107, 121–127 (2018).
202.
go back to reference Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, “Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family,” Phys.-Usp. 57, 827 (2014).CrossRef Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, “Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family,” Phys.-Usp. 57, 827 (2014).CrossRef
205.
go back to reference C. Tarantini, F. Kametani, S. Lee, J. Jiang, J. D. Weiss, J. Jaroszynski, E. E. Hellstrom, C. B. Eom, and D. C. Larbalestier, “Development of very high Jc in Ba(Fe1 – xCox)2As2 thin films grown on CaF2,” Sci. Rep. 4, 7305 (2014). https://doi.org/10.1038/srep07305CrossRef C. Tarantini, F. Kametani, S. Lee, J. Jiang, J. D. Weiss, J. Jaroszynski, E. E. Hellstrom, C. B. Eom, and D. C. Larbalestier, “Development of very high Jc in Ba(Fe1 – xCox)2As2 thin films grown on CaF2,” Sci. Rep. 4, 7305 (2014). https://​doi.​org/​10.​1038/​srep07305CrossRef
207.
go back to reference K. Iida, F. Kurth, M. Chihara, N. Sumiya, V. Grinenko, A. Ichinose, I. Tsukada, J. Hanisch, V. Matias, T. Hatano, B. Holzapfel, and H. Ikuta, “Highly textured oxypnictide superconducting thin films on metal substrates,” Appl. Phys. Lett. 105, 172602 (2014). https://doi.org/10.1063/1.4900931CrossRef K. Iida, F. Kurth, M. Chihara, N. Sumiya, V. Grinenko, A. Ichinose, I. Tsukada, J. Hanisch, V. Matias, T. Hatano, B. Holzapfel, and H. Ikuta, “Highly textured oxypnictide superconducting thin films on metal substrates,” Appl. Phys. Lett. 105, 172602 (2014). https://​doi.​org/​10.​1063/​1.​4900931CrossRef
208.
go back to reference W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnston, J. Jaroszynski, V. Matias, C. Sheehan, and Q. Li, “Iron-chalcogenide FeSe0.5Te0.5 coated superconducting tapes for high field applications,” Appl. Phys. Lett. 98, 262509 (2011).CrossRef W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnston, J. Jaroszynski, V. Matias, C. Sheehan, and Q. Li, “Iron-chalcogenide FeSe0.5Te0.5 coated superconducting tapes for high field applications,” Appl. Phys. Lett. 98, 262509 (2011).CrossRef
210.
go back to reference V. Braccini, A. Leo, E. Bellingeri, C. Ferdeghini, A. Galluzzi, M. Polichetti, A. Nigro, S. Pace, and G. Grimaldi, “Anisotropy effects on the quenching current of Fe(Se,Te) thin films,” IEEE Trans. Appl. Supercond. 28 (4), 7300204 (2018). V. Braccini, A. Leo, E. Bellingeri, C. Ferdeghini, A. Galluzzi, M. Polichetti, A. Nigro, S. Pace, and G. Grimaldi, “Anisotropy effects on the quenching current of Fe(Se,Te) thin films,” IEEE Trans. Appl. Supercond. 28 (4), 7300204 (2018).
211.
go back to reference K. Iida, J. Hanisch, S. Trommler, V. Matias, S. Haindl, F. Kurth, I. L. del Pozo, R. Huhne, M. Kidszun, J. Engelmann, L. Schultz, and B. Holzapfel, “Epitaxial growth of superconducting Ba(Fe1 – xCox)2As2 thin films on technical ion beam assisted deposition MgO substrates,” Appl. Phys. Exp. 4, 013103 (2011). https://doi.org/10.1143/APEX.4.013103CrossRef K. Iida, J. Hanisch, S. Trommler, V. Matias, S. Haindl, F. Kurth, I. L. del Pozo, R. Huhne, M. Kidszun, J. Engelmann, L. Schultz, and B. Holzapfel, “Epitaxial growth of superconducting Ba(Fe1 – xCox)2As2 thin films on technical ion beam assisted deposition MgO substrates,” Appl. Phys. Exp. 4, 013103 (2011). https://​doi.​org/​10.​1143/​APEX.​4.​013103CrossRef
212.
213.
go back to reference T. Katase, H. Hiramatsu, V. Matias, C. Sheehan, Y. Ishimaru, T. Kamiya, K. Tanabe, and H. Hosono, “Biaxially textured cobal-doped BaFe2As2 films with high critical current density over 1 MA/cm2 on MgO-buffered metal-tape flexible substrates,” Appl. Phys. Lett. 98 (4), 242510 (2011). https://doi.org/10.1063/1.3599844CrossRef T. Katase, H. Hiramatsu, V. Matias, C. Sheehan, Y. Ishimaru, T. Kamiya, K. Tanabe, and H. Hosono, “Biaxially textured cobal-doped BaFe2As2 films with high critical current density over 1 MA/cm2 on MgO-buffered metal-tape flexible substrates,” Appl. Phys. Lett. 98 (4), 242510 (2011). https://​doi.​org/​10.​1063/​1.​3599844CrossRef
220.
go back to reference X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International particle Accelerator conference (Melbourne, 2019). X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International particle Accelerator conference (Melbourne, 2019).
221.
go back to reference D. C. Larbalestier, A. W. West, W. Starch, W. Warnes, P. Lee, W. K. McDonald, P. O’Larey, K. Hemachalam, B. Zeitlin, R. Scanlan, and C. Taylor, “High critical current densities in industrial scale composites made from high homogeneity Nb46.5T,” IEEE Trans. Mag. 21, 269–272 (1985).CrossRef D. C. Larbalestier, A. W. West, W. Starch, W. Warnes, P. Lee, W. K. McDonald, P. O’Larey, K. Hemachalam, B. Zeitlin, R. Scanlan, and C. Taylor, “High critical current densities in industrial scale composites made from high homogeneity Nb46.5T,” IEEE Trans. Mag. 21, 269–272 (1985).CrossRef
222.
go back to reference D. C. Larbalestier and A. W. West, “New perspectives on flux pinning in Niobium-Titanium composite superconductors,” Acta Metall. 32, 1871–1881 (1984).CrossRef D. C. Larbalestier and A. W. West, “New perspectives on flux pinning in Niobium-Titanium composite superconductors,” Acta Metall. 32, 1871–1881 (1984).CrossRef
223.
go back to reference J. D. McCambridge, N. D. Rizzo, X. S. Ling, J. Q. Wang, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, “Flux pinning in NbTi/Nb multilayers,” IEEE Trans. Appl. Supercond. 5, 1697–1699 (1995).CrossRef J. D. McCambridge, N. D. Rizzo, X. S. Ling, J. Q. Wang, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, “Flux pinning in NbTi/Nb multilayers,” IEEE Trans. Appl. Supercond. 5, 1697–1699 (1995).CrossRef
224.
go back to reference P-J. Lee, “Superconductor: Wwires and cables: materials and processes,” in Encyclopedia of Materials: Science and Technology (Elseiver, Amsterdam, 2003). P-J. Lee, “Superconductor: Wwires and cables: materials and processes,” in Encyclopedia of Materials: Science and Technology (Elseiver, Amsterdam, 2003).
Metadata
Title
The Materials Science of Modern Technical Superconducting Materials
Authors
A. S. Tsapleva
I. M. Abdyukhanov
V. I. Pantsyrnyi
M. V. Alekseev
D. N. Rakov
Publication date
01-09-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22090125

Other articles of this Issue 9/2022

Physics of Metals and Metallography 9/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Fine Structure of MgB2 Alloyed with Y and Gd