Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2022

23-03-2022

The Mathematical Study of an Edge Crack in Two Different Specified Models under Time-Harmonic Wave Disturbance

Authors: N. Trivedi, S. Das, E.-M. Craciun

Published in: Mechanics of Composite Materials | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper devotes to determining a stress intensity factor (SIF) at the tip of an edge crack in two models considered. Problem-1 is an orthotropic strip of a finite thickness bonded by an orthotropic half-plane, and problem-2 is an orthotropic vertical semi-infinite strip of the same thickness. Edge cracks have been invaded perpendicularly by time-harmonic elastic waves. The models considered were taken to the transformed plane by using the Fourier transform technique, where the Schmidt method is used to find the unknown coefficients. The analytical expression of the SIF is derived for both the problems. The variations of normalized SIF for the different crack lengths and thickness of the strips for the problems considered were calculated numerically, and their behaviour was depicted graphically for different particular cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. N. Sneddon and S. C. Das, “The stress intensity factor at the tip of an edge crack in an elastic half-plane,” Int. J. Eng. Sci., 9, 25-36 (1971).CrossRef I. N. Sneddon and S. C. Das, “The stress intensity factor at the tip of an edge crack in an elastic half-plane,” Int. J. Eng. Sci., 9, 25-36 (1971).CrossRef
2.
go back to reference D. Achenbach, L. M. Keer, and D. A. Mendelsohn, “Elastodynamic analysis of an edge crack,” J. Appl. Mech., 47, 551-556 (1980).CrossRef D. Achenbach, L. M. Keer, and D. A. Mendelsohn, “Elastodynamic analysis of an edge crack,” J. Appl. Mech., 47, 551-556 (1980).CrossRef
3.
go back to reference G. D. Gupta and F. Erdogan, “The problem of edge cracks in an infinite strip,” J. Appl. Mech., 41, 1001-1006 (1974).CrossRef G. D. Gupta and F. Erdogan, “The problem of edge cracks in an infinite strip,” J. Appl. Mech., 41, 1001-1006 (1974).CrossRef
4.
go back to reference N. Hasebe and S. Inohara, “Stress analysis of a semi-infinite plate with an oblique edge crack,” Ingenieur-Archiv, 49, 51-62 (1980).CrossRef N. Hasebe and S. Inohara, “Stress analysis of a semi-infinite plate with an oblique edge crack,” Ingenieur-Archiv, 49, 51-62 (1980).CrossRef
5.
go back to reference Z. H. Jin and N. Noda, “Edge crack in a nonhomogeneous half plane under thermal loading,” J. Therm. Stresses, 17, 591-599 (1994).CrossRef Z. H. Jin and N. Noda, “Edge crack in a nonhomogeneous half plane under thermal loading,” J. Therm. Stresses, 17, 591-599 (1994).CrossRef
6.
go back to reference Z. H. Jin and G. H. Paulino, “Transient thermal stress analysis of an edge crack in a functionally graded material,” Int. J. Fract., 107, 73-98 (2001).CrossRef Z. H. Jin and G. H. Paulino, “Transient thermal stress analysis of an edge crack in a functionally graded material,” Int. J. Fract., 107, 73-98 (2001).CrossRef
7.
go back to reference L. Guo, L.-Z. Wu, and T. Zeng, “The dynamic response of an edge cracks in a functionally graded orthotropic strip,” Mech. Res. Commun., 32, 385-400 (2005).CrossRef L. Guo, L.-Z. Wu, and T. Zeng, “The dynamic response of an edge cracks in a functionally graded orthotropic strip,” Mech. Res. Commun., 32, 385-400 (2005).CrossRef
8.
go back to reference S. Das, S. Chakraborty, N. Srikanth, and M. Gupta, “Symmetric edge cracks in an orthotropic strip under normal loading,” Int. J. Fract., 153, 77-84 (2008).CrossRef S. Das, S. Chakraborty, N. Srikanth, and M. Gupta, “Symmetric edge cracks in an orthotropic strip under normal loading,” Int. J. Fract., 153, 77-84 (2008).CrossRef
9.
go back to reference S. Das, R Prasad, and S. Mukhopadhyay, “Stress intensity factor of an edge crack in composite media,” Int. J. Fract., 172, 201-207 (2011).CrossRef S. Das, R Prasad, and S. Mukhopadhyay, “Stress intensity factor of an edge crack in composite media,” Int. J. Fract., 172, 201-207 (2011).CrossRef
10.
go back to reference A. Singh, S. Das, and E-M. Craciun, “Thermal stress intensity factor for an edge crack in orthotropic composite media,” Compos. B. Eng., 153, 130-136 (2018). A. Singh, S. Das, and E-M. Craciun, “Thermal stress intensity factor for an edge crack in orthotropic composite media,” Compos. B. Eng., 153, 130-136 (2018).
11.
go back to reference A. Singh, S. Das, and E-M. Craciun, “Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip,” Mech. Compos. Mater., 55, 285-296, (2019). A. Singh, S. Das, and E-M. Craciun, “Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip,” Mech. Compos. Mater., 55, 285-296, (2019).
12.
go back to reference W. K. Chiu, L. R. F. Rose, and B. S. Vien, “Scattering of the edge-guided wave by an edge crack at a circular hole in an isotropic plate,” Procedia Eng., 188, 309-316 (2017).CrossRef W. K. Chiu, L. R. F. Rose, and B. S. Vien, “Scattering of the edge-guided wave by an edge crack at a circular hole in an isotropic plate,” Procedia Eng., 188, 309-316 (2017).CrossRef
13.
go back to reference G. H. Lee and H. G. Beom, “Interfacial edge crack between dissimilar orthotropic thermoelastic materials under uniform heat flow,” J. Mech. Sci. Technol., 28, 3041-3050 (2014).CrossRef G. H. Lee and H. G. Beom, “Interfacial edge crack between dissimilar orthotropic thermoelastic materials under uniform heat flow,” J. Mech. Sci. Technol., 28, 3041-3050 (2014).CrossRef
14.
go back to reference G. I. L’vov, “Using the concept of imposed constraints in the plasticity theory of composites,” Mech. Compos. Mater., 57, 337-348 (2021).CrossRef G. I. L’vov, “Using the concept of imposed constraints in the plasticity theory of composites,” Mech. Compos. Mater., 57, 337-348 (2021).CrossRef
15.
go back to reference A. I. Seyfullayev, M. A. Rustamova, and S. A. Kerimova, “A problem of fatigue fracture mechanics of a two-layer material with edge cracks,” Mech. Compos. Mater., 53, 415-424 (2017).CrossRef A. I. Seyfullayev, M. A. Rustamova, and S. A. Kerimova, “A problem of fatigue fracture mechanics of a two-layer material with edge cracks,” Mech. Compos. Mater., 53, 415-424 (2017).CrossRef
16.
go back to reference D. N. Solovyev, S. S. Dadunashvili, A. Mironov, P. Doronkin, and D. Mironovs, “Mathematical modeling and experimental investigations of a main rotor made from layered composite materials,” Mech. Compos. Mater., 56, 103-110 (2020).CrossRef D. N. Solovyev, S. S. Dadunashvili, A. Mironov, P. Doronkin, and D. Mironovs, “Mathematical modeling and experimental investigations of a main rotor made from layered composite materials,” Mech. Compos. Mater., 56, 103-110 (2020).CrossRef
17.
go back to reference H. A. Whitworth, “Modeling stiffness reduction of graphite/epoxy composite laminates,” J. Compos. Mater., 21, 362-372 (1987).CrossRef H. A. Whitworth, “Modeling stiffness reduction of graphite/epoxy composite laminates,” J. Compos. Mater., 21, 362-372 (1987).CrossRef
18.
go back to reference N. K. Naik, P. Yernamma, N. M. Thoram, R. Gadipatri, and V. R. Kavala, “High strain rate tensile behavior of woven fabric e-glass/epoxy composite,” Polym. Test., 29, 14-22 (2010).CrossRef N. K. Naik, P. Yernamma, N. M. Thoram, R. Gadipatri, and V. R. Kavala, “High strain rate tensile behavior of woven fabric e-glass/epoxy composite,” Polym. Test., 29, 14-22 (2010).CrossRef
19.
go back to reference X. Jia, Z. Zeng, G. Li, D. Hui, X. Yang, and S. Wang, “Enhancement of ablative and interfacial bonding properties of EPDM composites by incorporating epoxy phenolic resin,” Compos. B. Eng., 54, 234-240 (2013).CrossRef X. Jia, Z. Zeng, G. Li, D. Hui, X. Yang, and S. Wang, “Enhancement of ablative and interfacial bonding properties of EPDM composites by incorporating epoxy phenolic resin,” Compos. B. Eng., 54, 234-240 (2013).CrossRef
20.
go back to reference L. Z. Linganiso and R. D. Anandjiwala, “Fibre-reinforced laminates in aerospace engineering,” in: Advanced Composite Materials for Aerospace Engineering, Ch. 4, Woodhead Publishing (2016), pp. 101-127. L. Z. Linganiso and R. D. Anandjiwala, “Fibre-reinforced laminates in aerospace engineering,” in: Advanced Composite Materials for Aerospace Engineering, Ch. 4, Woodhead Publishing (2016), pp. 101-127.
21.
go back to reference C. Miao and H. V. Tippur, “Effect of loading rate on fracture behavior of carbon fiber reinforced polymer composites,” In Challenges in Mechanics of Time Dependent Materials, Fracture, Fatigue, Failure and Damage Evolution, Ch. 4, Springer, Cham (2020), pp. 21-28. C. Miao and H. V. Tippur, “Effect of loading rate on fracture behavior of carbon fiber reinforced polymer composites,” In Challenges in Mechanics of Time Dependent Materials, Fracture, Fatigue, Failure and Damage Evolution, Ch. 4, Springer, Cham (2020), pp. 21-28.
22.
go back to reference M. Y. Yuhazri, A. J. Zulfikar, and A. Ginting, “Fiber reinforced polymer composite as a strengthening of concrete structures: A review,” IOP Conf. Ser.: Mater. Sci. Eng., 1003, 012135 (2020).CrossRef M. Y. Yuhazri, A. J. Zulfikar, and A. Ginting, “Fiber reinforced polymer composite as a strengthening of concrete structures: A review,” IOP Conf. Ser.: Mater. Sci. Eng., 1003, 012135 (2020).CrossRef
23.
go back to reference W. Xu, C. Zhang, X. R. Wu, and Y. Yu, “Weight function method and its application for orthotropic single edge notched specimens,” Compos. Struct., 252, 112695 (2020).CrossRef W. Xu, C. Zhang, X. R. Wu, and Y. Yu, “Weight function method and its application for orthotropic single edge notched specimens,” Compos. Struct., 252, 112695 (2020).CrossRef
24.
go back to reference V. Petrova and S. Schmauder, “A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks,” Theor. Appl. Fract. Mech., 108, 102605 (2020).CrossRef V. Petrova and S. Schmauder, “A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks,” Theor. Appl. Fract. Mech., 108, 102605 (2020).CrossRef
25.
go back to reference S. Itou, “Dynamic stress intensity factors of three collinear cracks in an orthotropic plate subjected to time-harmonic disturbance,” J. Mech., 32, 491-499 (2016).CrossRef S. Itou, “Dynamic stress intensity factors of three collinear cracks in an orthotropic plate subjected to time-harmonic disturbance,” J. Mech., 32, 491-499 (2016).CrossRef
26.
go back to reference N. Trivedi, S. Das, and H. Altenbach, “Study of collinear cracks in a composite medium subjected to time-harmonic wave disturbance,” Z Angew Math Mech., 101, e202000307 (2021).CrossRef N. Trivedi, S. Das, and H. Altenbach, “Study of collinear cracks in a composite medium subjected to time-harmonic wave disturbance,” Z Angew Math Mech., 101, e202000307 (2021).CrossRef
27.
go back to reference T. Sadowski and A. Neubrand, “Estimation of the crack length after thermal shock in FGM strip,” Int. J. Fract., 127, L135-L140 (2004).CrossRef T. Sadowski and A. Neubrand, “Estimation of the crack length after thermal shock in FGM strip,” Int. J. Fract., 127, L135-L140 (2004).CrossRef
28.
go back to reference I. V. Ivanov, T. Sadowski, and D. Pietras, “Crack propagation in functionally graded strip under thermal shock,” Eur. Phys. J. Spec. Top., 222, 1587-1595 (2013).CrossRef I. V. Ivanov, T. Sadowski, and D. Pietras, “Crack propagation in functionally graded strip under thermal shock,” Eur. Phys. J. Spec. Top., 222, 1587-1595 (2013).CrossRef
29.
go back to reference V. N. Burlayenko, H. Altenbach, T. Sadowski, S. D. Dimitrova and A. Bhaskar, “Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements,” Appl. Math. Model., 45, 422-438 (2017).CrossRef V. N. Burlayenko, H. Altenbach, T. Sadowski, S. D. Dimitrova and A. Bhaskar, “Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements,” Appl. Math. Model., 45, 422-438 (2017).CrossRef
30.
go back to reference A. V. Kondratiev, V. E. Gaidachuk, and M. E. Kharchenko, “Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension,” Mech. Compos. Mater., 55, 259-266 (2019).CrossRef A. V. Kondratiev, V. E. Gaidachuk, and M. E. Kharchenko, “Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension,” Mech. Compos. Mater., 55, 259-266 (2019).CrossRef
31.
go back to reference G. I. L’vov and O. A. Kostromitskaya, “Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites,” Mech. Compos. Mater., 56, 1-14 (2020).CrossRef G. I. L’vov and O. A. Kostromitskaya, “Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites,” Mech. Compos. Mater., 56, 1-14 (2020).CrossRef
32.
go back to reference W. F. Yau, “Axisymmetric slipless indentation of an infinite, elastic cylinder,” SIAM J. Appl. Math., 15, 219-227 (1967).CrossRef W. F. Yau, “Axisymmetric slipless indentation of an infinite, elastic cylinder,” SIAM J. Appl. Math., 15, 219-227 (1967).CrossRef
Metadata
Title
The Mathematical Study of an Edge Crack in Two Different Specified Models under Time-Harmonic Wave Disturbance
Authors
N. Trivedi
S. Das
E.-M. Craciun
Publication date
23-03-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10007-4

Other articles of this Issue 1/2022

Mechanics of Composite Materials 1/2022 Go to the issue

Premium Partners