Skip to main content
Top

2019 | OriginalPaper | Chapter

6. The Maxwell Equations

Authors : David Colton, Rainer Kress

Published in: Inverse Acoustic and Electromagnetic Scattering Theory

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Up until now, we have considered only the direct and inverse obstacle scattering problem for time-harmonic acoustic waves. In the following two chapters, we want to extend these results to obstacle scattering for time-harmonic electromagnetic waves. As in our analysis on acoustic scattering, we begin with an outline of the solution of the direct problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
12.
go back to reference Angell, T.S., Colton, D., and Kress, R.: Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553–569 (1989).MathSciNetCrossRef Angell, T.S., Colton, D., and Kress, R.: Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553–569 (1989).MathSciNetCrossRef
13.
go back to reference Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52, 1597–1610 (1992).MathSciNetCrossRef Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52, 1597–1610 (1992).MathSciNetCrossRef
34.
go back to reference Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).MathSciNetCrossRef Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).MathSciNetCrossRef
71.
go back to reference Calderón, A.P.: The multipole expansions of radiation fields. J. Rat. Mech. Anal. 3, 523–537 (1954).MathSciNetMATH Calderón, A.P.: The multipole expansions of radiation fields. J. Rat. Mech. Anal. 3, 523–537 (1954).MathSciNetMATH
93.
go back to reference Colton, D., and Kirsch, A.: The use of polarization effects in electromagnetic inverse scattering problems. Math. Meth. in the Appl. Sci. 15, 1–10 (1992).MathSciNetCrossRef Colton, D., and Kirsch, A.: The use of polarization effects in electromagnetic inverse scattering problems. Math. Meth. in the Appl. Sci. 15, 1–10 (1992).MathSciNetCrossRef
97.
go back to reference Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).MathSciNetCrossRef Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).MathSciNetCrossRef
104.
go back to reference Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRef Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRef
144.
go back to reference Ganesh, M., and Hawkins, S. C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006).MathSciNetCrossRef Ganesh, M., and Hawkins, S. C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006).MathSciNetCrossRef
145.
go back to reference Ganesh, M., and Hawkins, S. C.: An efficient surface integral equation method for the time-harmonic Maxwell equations. ANZIAM J. 48, C17–C33 (2007).MathSciNetCrossRef Ganesh, M., and Hawkins, S. C.: An efficient surface integral equation method for the time-harmonic Maxwell equations. ANZIAM J. 48, C17–C33 (2007).MathSciNetCrossRef
146.
go back to reference Ganesh, M., and Hawkins, S. C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comput. Phys. 227, 4543–4562 (2008).MathSciNetCrossRef Ganesh, M., and Hawkins, S. C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comput. Phys. 227, 4543–4562 (2008).MathSciNetCrossRef
171.
go back to reference Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).MathSciNetCrossRef Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).MathSciNetCrossRef
172.
go back to reference Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990. Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990.
223.
go back to reference Jones, D.S.: Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford 1979. Jones, D.S.: Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford 1979.
224.
go back to reference Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986. Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.
234.
go back to reference Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).MathSciNetCrossRef Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).MathSciNetCrossRef
256.
go back to reference Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215–235 (1979).MathSciNetCrossRef Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215–235 (1979).MathSciNetCrossRef
260.
go back to reference Kress, R.: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91–98 (1986).MathSciNetCrossRef Kress, R.: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91–98 (1986).MathSciNetCrossRef
298.
go back to reference Le Louër, F.: Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems. J. Comput. Phys. 275, 662–666 (2014).MathSciNetCrossRef Le Louër, F.: Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems. J. Comput. Phys. 275, 662–666 (2014).MathSciNetCrossRef
299.
go back to reference Le Louër, F.: A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles. ANZIAM 59, E1–E49 (2018).CrossRef Le Louër, F.: A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles. ANZIAM 59, E1–E49 (2018).CrossRef
311.
go back to reference Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968.MATH Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968.MATH
313.
go back to reference Mautz, J.R., and Harrington, R.F.: A combined-source solution for radiating and scattering from a perfectly conducting body. IEEE Trans. Ant. and Prop. AP-27, 445–454 (1979).CrossRef Mautz, J.R., and Harrington, R.F.: A combined-source solution for radiating and scattering from a perfectly conducting body. IEEE Trans. Ant. and Prop. AP-27, 445–454 (1979).CrossRef
320.
go back to reference Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford, 2003.CrossRef Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford, 2003.CrossRef
328.
go back to reference Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46). Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46).
330.
332.
go back to reference Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin 1969.CrossRef Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin 1969.CrossRef
337.
go back to reference Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.CrossRef Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.CrossRef
349.
go back to reference Pieper, M.: Spektralrandintegralmethoden zur Maxwell-Gleichung. Dissertation, Göttingen 2007. Pieper, M.: Spektralrandintegralmethoden zur Maxwell-Gleichung. Dissertation, Göttingen 2007.
375.
go back to reference Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.MATH Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.MATH
393.
go back to reference Silver, S.: Microwave Antenna Theory and Design. M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York 1949. Silver, S.: Microwave Antenna Theory and Design. M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York 1949.
399.
go back to reference Stratton, J.A., and Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939).CrossRef Stratton, J.A., and Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939).CrossRef
411.
go back to reference van Bladel, J.: Electromagnetic Fields. Hemisphere Publishing Company, Washington 1985. van Bladel, J.: Electromagnetic Fields. Hemisphere Publishing Company, Washington 1985.
426.
go back to reference Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952). Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).
429.
Metadata
Title
The Maxwell Equations
Authors
David Colton
Rainer Kress
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30351-8_6

Premium Partner