Skip to main content
Top
Published in: Engineering with Computers 3/2017

01-10-2016 | Original Article

The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem

Authors: Jamal Amani Rad, Kamal Rashedi, Kourosh Parand, Hojatollah Adibi

Published in: Engineering with Computers | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we extend the application of meshfree node based schemes for solving one-dimensional inverse Cauchy-Stefan problem. The aim is devoted to recover the initial and boundary conditions from some Cauchy data lying on the admissible curve s(t) as the extra overspecifications. To keep matters simple, the problem has been considered in one dimensional, however the physical domain of the problem is supposed as an irregular bounded domain in \(\mathbb {R}^2\). The methods provide the space-time approximations for the heat temperature derived by expanding the required approximate solutions using collocation scheme based on radial point interpolation method (RPIM). The proposed method makes appropriate shape functions which possess the important Delta function property to satisfy the essential conditions automatically. In addition, to conquer the ill-posedness of the problem, particular optimization technique has been applied for solving the system of equations \(Ax=b\) in which A is a nonsymmetric stiffness matrix. As the consequences, reliable approximate solutions are obtained which continuously depend on input data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Samarskii A, Vabishchevich A (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, BerlinCrossRefMATH Samarskii A, Vabishchevich A (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, BerlinCrossRefMATH
2.
go back to reference Tikhonov A, Arsenin V (1986) Solution methods for Ill-posed problems. Nauka, MoscowMATH Tikhonov A, Arsenin V (1986) Solution methods for Ill-posed problems. Nauka, MoscowMATH
3.
go back to reference Vabishchevich A, Samarskii A (1999) Additive schemes for mathematical-physics problems. Nauka, MoscowMATH Vabishchevich A, Samarskii A (1999) Additive schemes for mathematical-physics problems. Nauka, MoscowMATH
4.
go back to reference Beck JV, Blackwell B, C. R. S. C. Jr. (1985) Inverse heat conduction, J. Wiley-Intersc, New York Beck JV, Blackwell B, C. R. S. C. Jr. (1985) Inverse heat conduction, J. Wiley-Intersc, New York
5.
go back to reference Johansson B, Lesnic D (2008) A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal 87:265–276MathSciNetCrossRefMATH Johansson B, Lesnic D (2008) A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal 87:265–276MathSciNetCrossRefMATH
6.
7.
go back to reference Cannon J, Lin Y, Xu S (1994) Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl 10:227–243MathSciNetCrossRefMATH Cannon J, Lin Y, Xu S (1994) Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl 10:227–243MathSciNetCrossRefMATH
8.
9.
go back to reference Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Meth Part Diff Eq 22:220–257MathSciNetCrossRefMATH Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Meth Part Diff Eq 22:220–257MathSciNetCrossRefMATH
10.
go back to reference Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52:39–62MathSciNetCrossRefMATH Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52:39–62MathSciNetCrossRefMATH
11.
12.
go back to reference Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetCrossRefMATH Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetCrossRefMATH
13.
go back to reference Johansson B, Lesnic D, Reeve T (2011) Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions. Inverse Probl Sci Eng 19:659–677MathSciNetCrossRefMATH Johansson B, Lesnic D, Reeve T (2011) Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions. Inverse Probl Sci Eng 19:659–677MathSciNetCrossRefMATH
14.
go back to reference Cannon JR, J. D. Jr. (1967) The Cauchy problem for the heat equation, SIAM J Numer Anal 4 :317–336 Cannon JR, J. D. Jr. (1967) The Cauchy problem for the heat equation, SIAM J Numer Anal 4 :317–336
15.
go back to reference Lucy L (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024CrossRef Lucy L (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024CrossRef
16.
go back to reference Touzot BNG, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH Touzot BNG, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH
17.
go back to reference Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH
18.
go back to reference Duarte C, Oden J (1996) An h-p adaptative method using clouds. Comput Methods Appl Mech Eng 139:237–262CrossRefMATH Duarte C, Oden J (1996) An h-p adaptative method using clouds. Comput Methods Appl Mech Eng 139:237–262CrossRefMATH
20.
go back to reference Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111MathSciNetCrossRef Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111MathSciNetCrossRef
22.
go back to reference Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145MathSciNetCrossRefMATH
23.
go back to reference Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH
24.
go back to reference Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. App Math Comput 218:5292–5309MathSciNetCrossRefMATH Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. App Math Comput 218:5292–5309MathSciNetCrossRefMATH
25.
go back to reference Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetCrossRefMATH Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetCrossRefMATH
26.
go back to reference Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33:1729–1738MathSciNetCrossRefMATH Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33:1729–1738MathSciNetCrossRefMATH
27.
go back to reference Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press
28.
go back to reference Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH
29.
go back to reference Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756CrossRefMATH Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756CrossRefMATH
30.
go back to reference Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Netherlands Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Netherlands
31.
go back to reference Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH
32.
go back to reference Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlin Sci Numer Simul 22:1178–1200MathSciNetCrossRefMATH Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlin Sci Numer Simul 22:1178–1200MathSciNetCrossRefMATH
33.
34.
go back to reference Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161MathSciNetCrossRefMATH
35.
go back to reference Sharan M, Kansa EJ, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302MathSciNetMATH Sharan M, Kansa EJ, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302MathSciNetMATH
36.
go back to reference Power H, Zerroukat M, Chen C (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Meth Eng 42:1263–1278CrossRefMATH Power H, Zerroukat M, Chen C (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Meth Eng 42:1263–1278CrossRefMATH
37.
go back to reference Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199CrossRefMATH Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199CrossRefMATH
38.
go back to reference Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34:206–212MathSciNetCrossRefMATH Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34:206–212MathSciNetCrossRefMATH
39.
go back to reference Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 190:1754–1761MathSciNetMATH Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 190:1754–1761MathSciNetMATH
40.
41.
go back to reference Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker-Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetCrossRefMATH Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker-Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetCrossRefMATH
42.
go back to reference Kazem S, Rad JA, Parand K (2012) A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions. Comput Math Appl 64:399–412MathSciNetCrossRefMATH Kazem S, Rad JA, Parand K (2012) A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions. Comput Math Appl 64:399–412MathSciNetCrossRefMATH
43.
go back to reference Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Compu Phys Commun. doi:10.1016/j.cpc.2012.10.012 Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Compu Phys Commun. doi:10.​1016/​j.​cpc.​2012.​10.​012
44.
go back to reference Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Advan Comp Math 11:193–210MathSciNetCrossRefMATH Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Advan Comp Math 11:193–210MathSciNetCrossRefMATH
45.
go back to reference Cheng AHD, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and H-\(c\) multiquadric collocation method for partial differential equations. Numer Meth Part DE 19:571–594MathSciNetCrossRefMATH Cheng AHD, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and H-\(c\) multiquadric collocation method for partial differential equations. Numer Meth Part DE 19:571–594MathSciNetCrossRefMATH
47.
go back to reference Tarwater AE (1985) A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory Tarwater AE (1985) A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory
48.
49.
go back to reference Powell M (1992) The Theory of radial basis function approximation in 1990. Clarendon, OxfordMATH Powell M (1992) The Theory of radial basis function approximation in 1990. Clarendon, OxfordMATH
51.
go back to reference Buhmann MD (2004) Radial basis functions: theory and implementations. Cambridge University Press, New YorkMATH Buhmann MD (2004) Radial basis functions: theory and implementations. Cambridge University Press, New YorkMATH
52.
go back to reference Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH
54.
go back to reference Liu G, Gu Y (1999) A point interpolation method, Proceeding of 4th Asia-Pacific Conference on computational mechanics, Singapor 1009–1014 Liu G, Gu Y (1999) A point interpolation method, Proceeding of 4th Asia-Pacific Conference on computational mechanics, Singapor 1009–1014
55.
go back to reference Liu G, Gu Y (2001) A point interpolation method for two-dimensional solid. Int J Numer Meth Eng 50:937–951CrossRefMATH Liu G, Gu Y (2001) A point interpolation method for two-dimensional solid. Int J Numer Meth Eng 50:937–951CrossRefMATH
56.
go back to reference Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648CrossRefMATH Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648CrossRefMATH
57.
go back to reference Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2\(d\) meshless methods. Comput Meth Appl Mech Eng 191:2611–2630MathSciNetCrossRefMATH Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2\(d\) meshless methods. Comput Meth Appl Mech Eng 191:2611–2630MathSciNetCrossRefMATH
58.
go back to reference Li X, Zhu J, Zhang S (2009) A hybrid radial boundary node method based on radial basis point interpolation. Eng Anal Bound Elem 33:1273–1283MathSciNetCrossRefMATH Li X, Zhu J, Zhang S (2009) A hybrid radial boundary node method based on radial basis point interpolation. Eng Anal Bound Elem 33:1273–1283MathSciNetCrossRefMATH
59.
go back to reference Liu GR, Dai K, Lim KM, Gu Y (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mat Struct 12:171–180CrossRef Liu GR, Dai K, Lim KM, Gu Y (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mat Struct 12:171–180CrossRef
60.
go back to reference Liu G (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis/CRC Press, Boca RatonCrossRef Liu G (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis/CRC Press, Boca RatonCrossRef
61.
go back to reference Liu G, Jiang Y, Chen L, Zhang G, Zhang Y (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396CrossRef Liu G, Jiang Y, Chen L, Zhang G, Zhang Y (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396CrossRef
62.
go back to reference Liu G, Dai K, Lim K, Gu Y (2002) A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519CrossRefMATH Liu G, Dai K, Lim K, Gu Y (2002) A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519CrossRefMATH
63.
go back to reference Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phy Commun 181:772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phy Commun 181:772–786MathSciNetCrossRefMATH
64.
go back to reference Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analysis of 2-\(d\) solids. J Sound Vib 246:29–46CrossRef Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analysis of 2-\(d\) solids. J Sound Vib 246:29–46CrossRef
65.
go back to reference Gu Y, Liu G (2002) A boundary radial point interpolation method (BRPIM) for 2-\(d\) structural analyses. Struct Eng Mech 15:535–550CrossRef Gu Y, Liu G (2002) A boundary radial point interpolation method (BRPIM) for 2-\(d\) structural analyses. Struct Eng Mech 15:535–550CrossRef
66.
go back to reference Krige D (1976) A review of the development of geostatistics in south africa. In: David M, huijbregts C (eds), Advanced Geostatistics in the Mining Industry, Holland (1976) 279–293 Krige D (1976) A review of the development of geostatistics in south africa. In: David M, huijbregts C (eds), Advanced Geostatistics in the Mining Industry, Holland (1976) 279–293
67.
go back to reference Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11CrossRefMATH Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11CrossRefMATH
68.
go back to reference Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467MathSciNetCrossRefMATH Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467MathSciNetCrossRefMATH
69.
go back to reference Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70CrossRefMATH Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70CrossRefMATH
70.
go back to reference Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394CrossRef Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394CrossRef
71.
go back to reference Khattak AJ, Tirmizi SIA, Islam SU (2009) Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng Anal Bound Elem 33:661–667MathSciNetCrossRefMATH Khattak AJ, Tirmizi SIA, Islam SU (2009) Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng Anal Bound Elem 33:661–667MathSciNetCrossRefMATH
72.
go back to reference Dehghan M, Shokri A (2009) A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 52:461–477MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 52:461–477MathSciNetCrossRefMATH
73.
go back to reference Fornberg B, Flyer N, Russell JM (2010) Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 30:149–172MathSciNetCrossRefMATH Fornberg B, Flyer N, Russell JM (2010) Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 30:149–172MathSciNetCrossRefMATH
74.
go back to reference Fornberg B, Dirscol T, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 43:473–490MathSciNetCrossRefMATH Fornberg B, Dirscol T, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 43:473–490MathSciNetCrossRefMATH
75.
go back to reference Ballestra LV, Pacelli G (2013) Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J Econ Dyn Cont 37:1142–1167MathSciNetCrossRef Ballestra LV, Pacelli G (2013) Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J Econ Dyn Cont 37:1142–1167MathSciNetCrossRef
76.
go back to reference Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36:1546–1554MathSciNetCrossRefMATH Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36:1546–1554MathSciNetCrossRefMATH
77.
go back to reference Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35:1075–1084MathSciNetCrossRefMATH Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35:1075–1084MathSciNetCrossRefMATH
78.
go back to reference Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82MathSciNetMATH Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82MathSciNetMATH
79.
go back to reference Huang CS, Lee CF, Cheng AHD (2010) On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng Anal Bound Elem 34:802–809MathSciNetCrossRefMATH Huang CS, Lee CF, Cheng AHD (2010) On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng Anal Bound Elem 34:802–809MathSciNetCrossRefMATH
80.
go back to reference Huang CS, Yen HD, Cheng AHD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623CrossRefMATH Huang CS, Yen HD, Cheng AHD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623CrossRefMATH
82.
go back to reference Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization, SIAM Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization, SIAM
83.
go back to reference Nocedal J, Wright S (1999) Numerical optimization, Springer Nocedal J, Wright S (1999) Numerical optimization, Springer
84.
go back to reference Sherman J, Morrison W (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Statis 20:620–624CrossRef Sherman J, Morrison W (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Statis 20:620–624CrossRef
85.
go back to reference Dehghan M, Yousefi S, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng (In press) Dehghan M, Yousefi S, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng (In press)
86.
go back to reference Murio D (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetCrossRefMATH Murio D (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetCrossRefMATH
87.
go back to reference Slodicka M, Lesnic D, Onyango T (2010) Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl Sci Eng 18:65–81MathSciNetCrossRefMATH Slodicka M, Lesnic D, Onyango T (2010) Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl Sci Eng 18:65–81MathSciNetCrossRefMATH
88.
go back to reference Wang Y, Yagola AG, Yang C (2010) Optimization and regularization for computational inverse problems and applications. Higher Education Press, BeijingMATH Wang Y, Yagola AG, Yang C (2010) Optimization and regularization for computational inverse problems and applications. Higher Education Press, BeijingMATH
90.
go back to reference Galperin EA, Kansa EJ (2002) Application of global optimization and radial basis functions to numerical solutions of weakly singular volterra integral equations. Comput Math Appl 43:491–499MathSciNetCrossRefMATH Galperin EA, Kansa EJ (2002) Application of global optimization and radial basis functions to numerical solutions of weakly singular volterra integral equations. Comput Math Appl 43:491–499MathSciNetCrossRefMATH
91.
go back to reference Kansa EJ, Ling L (2014) Collocation and optimization initialization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIICrossRefMATH Kansa EJ, Ling L (2014) Collocation and optimization initialization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIICrossRefMATH
92.
go back to reference Kansa EJ (2015) Radial basis functions: achievements and challenges. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIIIMATH Kansa EJ (2015) Radial basis functions: achievements and challenges. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIIIMATH
93.
go back to reference Kansa EJ (2012) Strong form collocation input for optimization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XVII Kansa EJ (2012) Strong form collocation input for optimization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XVII
Metadata
Title
The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem
Authors
Jamal Amani Rad
Kamal Rashedi
Kourosh Parand
Hojatollah Adibi
Publication date
01-10-2016
Publisher
Springer London
Published in
Engineering with Computers / Issue 3/2017
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-016-0489-3

Other articles of this Issue 3/2017

Engineering with Computers 3/2017 Go to the issue