Skip to main content
Top

2017 | OriginalPaper | Chapter

The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine

Authors : Marek Macko, Zbigniew Szczepański, Dariusz Mikołajewski, Emilia Mikołajewska, Sławomir Listopadzki

Published in: Proceedings of the 13th International Scientific Conference

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper presents the concept and implementation of innovative methods of producing artificial organs and prosthesis based on 3D printing technology. These organs possess physical and mechanical properties similar to human organs and bodies part. As a result, using such organs, it is possible to conduct training and workshops, especially in the field of urological surgery, under the conditions close to real operations. Due to the fabrication of 3D models can also lead so-called pre-operations in order to better prepare surgeons to carry out complex operations and post-operation e.g. observers proper operation. The proposed method enables the production of artificial human organs whose consistency, plastic properties, hardness, elasticity are close to the real organ of specific patient, because it can be made on the basis of the data from MRI and CT. The process of preparing 3D geometry is prepared in applications in the field of CAD, but also through advanced applications designed for editing in vector geometry environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hoy MB (2003) 3D printing: making things at the library. Med Ref Serv Q. 2013; 32(1):94–9. Hoy MB (2003) 3D printing: making things at the library. Med Ref Serv Q. 2013; 32(1):94–9.
2.
go back to reference Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol.;272(2):497–502. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol.;272(2):497–502.
3.
go back to reference Markwald R. (2003) Desktop organ printing. Anat Rec B New Anat.;273(1):120–1. Markwald R. (2003) Desktop organ printing. Anat Rec B New Anat.;273(1):120–1.
4.
go back to reference Wilson WC Jr, Boland T. (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol.;272(2):491–6. Wilson WC Jr, Boland T. (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol.;272(2):491–6.
5.
go back to reference Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ. (2006) Jet-based methods to print living cells. Biotechnol J.;1(9):930–48. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ. (2006) Jet-based methods to print living cells. Biotechnol J.;1(9):930–48.
6.
go back to reference Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P. (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods.;20(6):473–84. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P. (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods.;20(6):473–84.
7.
go back to reference Boland T, Xu T, Damon B, Cui X. (2006) Application of inkjet printing to tissue engineering. Biotechnol J.;1(9):910–7. Boland T, Xu T, Damon B, Cui X. (2006) Application of inkjet printing to tissue engineering. Biotechnol J.;1(9):910–7.
8.
go back to reference Kundu J, Shim JH, Jang J, Kim SW, Cho DW. (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med.;9(11):1286–97. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med.;9(11):1286–97.
9.
go back to reference Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B. (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng.;109(7):1855–63. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B. (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng.;109(7):1855–63.
10.
go back to reference Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT. (2015) In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. Biomater Sci.;3(1):134–43. Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT. (2015) In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. Biomater Sci.;3(1):134–43.
11.
go back to reference Zhang Y, Yu Y, Chen H, Ozbolat IT. (2013) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication.;5(2):025004. Zhang Y, Yu Y, Chen H, Ozbolat IT. (2013) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication.;5(2):025004.
12.
go back to reference Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng.;112(5):1047–55. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng.;112(5):1047–55.
13.
go back to reference Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med.;6(266):266ra171. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med.;6(266):266ra171.
14.
go back to reference Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. (2013) 3D printed bionic ears. Nano Lett.;13(6):2634–9. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. (2013) 3D printed bionic ears. Nano Lett.;13(6):2634–9.
15.
go back to reference Rochow N, Manan A, Wu WI, Fusch G, Monkman S, Leung J, Chan E, Nagpal D, Predescu D, Brash J, (2014) An integrated array of microfluidic oxygenators as a neonatal lung assist device: in vitro characterization and in vivo demonstration. Artif Organs.;38(10):856–66. Rochow N, Manan A, Wu WI, Fusch G, Monkman S, Leung J, Chan E, Nagpal D, Predescu D, Brash J, (2014) An integrated array of microfluidic oxygenators as a neonatal lung assist device: in vitro characterization and in vivo demonstration. Artif Organs.;38(10):856–66.
16.
go back to reference Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication.;7(4):044102. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication.;7(4):044102.
17.
go back to reference Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. (2015) 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules.;16(5):1489–96. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. (2015) 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules.;16(5):1489–96.
18.
go back to reference Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ. (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A.;14(7):1195–202. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ. (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A.;14(7):1195–202.
19.
go back to reference Bezgin G, Reid AT, Schubert D, Kötter R. (2009) Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis. Neuroinformatics.;7(1):7–22. Bezgin G, Reid AT, Schubert D, Kötter R. (2009) Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis. Neuroinformatics.;7(1):7–22.
20.
go back to reference Radenkovic D, Solouk A, Seifalian A. (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses.;87:30–3. Radenkovic D, Solouk A, Seifalian A. (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses.;87:30–3.
21.
go back to reference Niebuhr NI, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, Möhler C, Pfaffenberger A, Jäkel O, Greilich S. (2016) Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys.;43(2):908. Niebuhr NI, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, Möhler C, Pfaffenberger A, Jäkel O, Greilich S. (2016) Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys.;43(2):908.
22.
go back to reference Visser J, Melchels FP, Dhert WJ, Malda J. (2013) Tissue printing; the potential application of 3D printing in medicine. Ned Tijdschr Geneeskd.;157(52):A7043. Visser J, Melchels FP, Dhert WJ, Malda J. (2013) Tissue printing; the potential application of 3D printing in medicine. Ned Tijdschr Geneeskd.;157(52):A7043.
23.
go back to reference Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH. (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs.;38(6):E95–E105. Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH. (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs.;38(6):E95–E105.
24.
go back to reference Hsieh FY, Hsu SH. (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis. Hsieh FY, Hsu SH. (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis.
25.
go back to reference Kurzrock R, Stewart DJ. Click chemistry, (2015) 3D-printing, and omics: the future of drug development. Oncotarget.; doi:10.18632/oncotarget.6787. Kurzrock R, Stewart DJ. Click chemistry, (2015) 3D-printing, and omics: the future of drug development. Oncotarget.; doi:10.18632/oncotarget.6787.
26.
go back to reference Gao G, Cui X. (2015) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. Gao G, Cui X. (2015) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett.
27.
go back to reference Wang X, Rijff BL, Khang G. (2015) A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med.; doi:10.1002/term.2038. Wang X, Rijff BL, Khang G. (2015) A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med.; doi:10.​1002/​term.​2038.
28.
go back to reference Gao Q, He Y, Fu JZ, Liu A, Ma L. (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials.;61:203–15. Gao Q, He Y, Fu JZ, Liu A, Ma L. (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials.;61:203–15.
29.
go back to reference Sun Y, Yang X, Wang Q. (2014) In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations. Biofabrication.;6(1):015008. Sun Y, Yang X, Wang Q. (2014) In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations. Biofabrication.;6(1):015008.
30.
go back to reference Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. (2014) Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ.;71(5):762–7. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. (2014) Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ.;71(5):762–7.
31.
go back to reference Ko HC, Milthorpe BK, McFarland CD. (2007) Engineering thick tissues—the vascularisation problem. Eur Cell Mater.;14:1–18; discussion 18–9. Ko HC, Milthorpe BK, McFarland CD. (2007) Engineering thick tissues—the vascularisation problem. Eur Cell Mater.;14:1–18; discussion 18–9.
32.
go back to reference Stanton MM, Trichet-Paredes C, Sánchez S. (2015) Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip.;15(7):1634–7. Stanton MM, Trichet-Paredes C, Sánchez S. (2015) Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip.;15(7):1634–7.
33.
go back to reference Steffens D, Alvarenga Rezende R, Santi B, Alencar de Sena Pereira FD, Inforçatti Neto P, Lopes da Silva JV, Pranke P. (2015) 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. J Appl Biomater Funct Mater.; doi:10.5301/jabfm.5000252. Steffens D, Alvarenga Rezende R, Santi B, Alencar de Sena Pereira FD, Inforçatti Neto P, Lopes da Silva JV, Pranke P. (2015) 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. J Appl Biomater Funct Mater.; doi:10.​5301/​jabfm.​5000252.
34.
go back to reference Jakus AE, Rutz AL, Shah RN. (2016) Advancing the field of 3D biomaterial printing. Biomed Mater.;11(1):014102. Jakus AE, Rutz AL, Shah RN. (2016) Advancing the field of 3D biomaterial printing. Biomed Mater.;11(1):014102.
35.
go back to reference Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. (2015) Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice. Surg Innov.; 29. pii: 1553350615607641. Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. (2015) Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice. Surg Innov.; 29. pii: 1553350615607641.
36.
go back to reference Bauermeister AJ, Zuriarrain A, Newman MI. (2015) Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review. Ann Plast Surg. Bauermeister AJ, Zuriarrain A, Newman MI. (2015) Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review. Ann Plast Surg.
37.
go back to reference Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS. (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport.;20(8):798–803. Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS. (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport.;20(8):798–803.
38.
go back to reference Yoo SS. (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat.;25(5):507–11. Yoo SS. (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat.;25(5):507–11.
Metadata
Title
The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine
Authors
Marek Macko
Zbigniew Szczepański
Dariusz Mikołajewski
Emilia Mikołajewska
Sławomir Listopadzki
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50938-9_36

Premium Partners