Skip to main content
Top
Published in: Neural Computing and Applications 12/2021

15-10-2020 | Original Article

The Mode-Fisher pooling for time complexity optimization in deep convolutional neural networks

Authors: Dou El Kefel Mansouri, Bachir Kaddar, Seif-Eddine Benkabou, Khalid Benabdeslem

Published in: Neural Computing and Applications | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we aim to improve the performance, time complexity and energy efficiency of deep convolutional neural networks (CNNs) by combining hardware and specialization techniques. Since the pooling step represents a process that contributes significantly to CNNs performance improvement, we propose the Mode-Fisher pooling method. This form of pooling can potentially offer a very promising results in terms of improving feature extraction performance. The proposed method reduces significantly the data movement in the CNN and save up to 10% of total energy, without any performance penalty.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Computer file that contains an uncompressed image. It is not viewable directly by most computer systems.
 
2
In the literature, the most used filters do not exceed the size (\(5 \times 5\)).
 
3
Max pooling: y= Max (\(x_{ij}\)).
 
4
Average pooling: y= Mean (\(x_{ij}\)),y represents the output, i and j are the row and column index of the pooling region.
 
5
All data sets are summarized in Table 1.
 
Literature
1.
go back to reference Abhimanyu D, Otkrist G, Ramesh R, Nikhil N (2018) Maximum-entropy fine grained classification. In: Advances in neural information processing systems, pp 637–647 Abhimanyu D, Otkrist G, Ramesh R, Nikhil N (2018) Maximum-entropy fine grained classification. In: Advances in neural information processing systems, pp 637–647
2.
go back to reference Akata Z, Perronnin F, Harchaoui Z, Schmid C (2014) Good practice in large-scale learning for image classification. IEEE Trans Pattern Anal Mach Intell 36:507–520CrossRef Akata Z, Perronnin F, Harchaoui Z, Schmid C (2014) Good practice in large-scale learning for image classification. IEEE Trans Pattern Anal Mach Intell 36:507–520CrossRef
3.
go back to reference Asif U, Bennamoun M, Sohel F (2017) A multi-modal, discriminative and spatially invariant CNN for RGB-D object labeling. IEEE Trans Pattern Anal Mach Intell 40(9):2051–2065CrossRef Asif U, Bennamoun M, Sohel F (2017) A multi-modal, discriminative and spatially invariant CNN for RGB-D object labeling. IEEE Trans Pattern Anal Mach Intell 40(9):2051–2065CrossRef
4.
go back to reference Beigpour S, Riess C, Van De Weijer J, Angelopoulou E (2014) Multi-illuminant estimation with conditional random fields. IEEE Trans Image Process 23:83–96MathSciNetCrossRef Beigpour S, Riess C, Van De Weijer J, Angelopoulou E (2014) Multi-illuminant estimation with conditional random fields. IEEE Trans Image Process 23:83–96MathSciNetCrossRef
5.
go back to reference Bianco S (2017) Single and multiple illuminant estimation using convolutional neural networks. IEEE Trans Image Process 26(9):4347–4362MathSciNetCrossRef Bianco S (2017) Single and multiple illuminant estimation using convolutional neural networks. IEEE Trans Image Process 26(9):4347–4362MathSciNetCrossRef
6.
go back to reference Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, Jackel LD, LeCun Y, Muller UA, et al (1994) Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of the 12th IAPR international conference on pattern recognition, conference B: computer vision and image processing, IEEE, vol 2, pp 77–82 Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, Jackel LD, LeCun Y, Muller UA, et al (1994) Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of the 12th IAPR international conference on pattern recognition, conference B: computer vision and image processing, IEEE, vol 2, pp 77–82
7.
go back to reference Brain G (2017) Tensorflow: an open-source software library for machine intelligence Brain G (2017) Tensorflow: an open-source software library for machine intelligence
8.
go back to reference Chen Y-H, Emer J, Sze V (2017) Using dataflow to optimize energy efficiency of deep neural network accelerators. IEEE Micro 37:12–21CrossRef Chen Y-H, Emer J, Sze V (2017) Using dataflow to optimize energy efficiency of deep neural network accelerators. IEEE Micro 37:12–21CrossRef
11.
go back to reference Cimpoi M, Maji S, Kokkinos I, Vedaldi A (2016) Deep filter banks for texture recognition, description, and segmentation. Int J Comput Vis 118:65–94MathSciNetCrossRef Cimpoi M, Maji S, Kokkinos I, Vedaldi A (2016) Deep filter banks for texture recognition, description, and segmentation. Int J Comput Vis 118:65–94MathSciNetCrossRef
12.
go back to reference Cohen BH, Lea RB (2004) Essentials of statistics for the social and behavioral sciences, vol 3. Wiley, New York Cohen BH, Lea RB (2004) Essentials of statistics for the social and behavioral sciences, vol 3. Wiley, New York
13.
go back to reference Conneau A, Schwenk H, Barrault L, Lecun Y (2017) Very deep convolutional networks for text classification. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics, Long Papers, vol. 1, pp 1107–1116 Conneau A, Schwenk H, Barrault L, Lecun Y (2017) Very deep convolutional networks for text classification. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics, Long Papers, vol. 1, pp 1107–1116
14.
go back to reference core team P (2017) Pytorch: Tensors and dynamic neural networks in python with strong GPU acceleration core team P (2017) Pytorch: Tensors and dynamic neural networks in python with strong GPU acceleration
15.
go back to reference Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
18.
go back to reference Dietterich T (1995) Overfitting and undercomputing in machine learning. ACM Comput Surv 27:326–327CrossRef Dietterich T (1995) Overfitting and undercomputing in machine learning. ACM Comput Surv 27:326–327CrossRef
19.
go back to reference Dixit M, Chen S, Gao D, Rasiwasia N, Vasconcelos N (2015) Scene classification with semantic fisher vectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2974–2983 Dixit M, Chen S, Gao D, Rasiwasia N, Vasconcelos N (2015) Scene classification with semantic fisher vectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2974–2983
20.
go back to reference Ebner M (2009) Color constancy based on local space average color. Mach Vis Appl 20:283–301CrossRef Ebner M (2009) Color constancy based on local space average color. Mach Vis Appl 20:283–301CrossRef
21.
go back to reference Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11:625–660MathSciNetMATH Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11:625–660MathSciNetMATH
22.
go back to reference Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701CrossRef Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701CrossRef
23.
go back to reference Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92MathSciNetCrossRef Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92MathSciNetCrossRef
24.
go back to reference Gijsenij A, Lu R, Gevers T (2012) Color constancy for multiple light sources. IEEE Trans Image Process 21:697–707MathSciNetCrossRef Gijsenij A, Lu R, Gevers T (2012) Color constancy for multiple light sources. IEEE Trans Image Process 21:697–707MathSciNetCrossRef
25.
go back to reference Goodfellow IJ, Warde-Farley D, Mirza M, Courville M, Bengio Y (2013) Maxout networks. arXiv preprint arXiv:1302.4389 Goodfellow IJ, Warde-Farley D, Mirza M, Courville M, Bengio Y (2013) Maxout networks. arXiv preprint arXiv:1302.4389
26.
go back to reference Gravetter F, Wallnau L (2015). Statistics for the behavioral sciences. Cengage Learning Gravetter F, Wallnau L (2015). Statistics for the behavioral sciences. Cengage Learning
27.
go back to reference Hassaballah M, Abdelmgeid AA, Alshazly HA (2016) Image features detection, description and matching. Image feature detectors and descriptors. Springer, Cham, pp 11–45CrossRef Hassaballah M, Abdelmgeid AA, Alshazly HA (2016) Image features detection, description and matching. Image feature detectors and descriptors. Springer, Cham, pp 11–45CrossRef
28.
go back to reference He K, Sun J (2015) Convolutional neural networks at constrained time cost. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 5353–5360 He K, Sun J (2015) Convolutional neural networks at constrained time cost. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 5353–5360
29.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37:1904–1916CrossRef He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37:1904–1916CrossRef
30.
go back to reference Hensman P, Masko D (2015) The impact of imbalanced training data for convolutional neural networks. Degree Project in Computer Science, KTH Royal Institute of Technology Hensman P, Masko D (2015) The impact of imbalanced training data for convolutional neural networks. Degree Project in Computer Science, KTH Royal Institute of Technology
31.
32.
go back to reference Hsi-Shou W (2018) Energy-efficient neural network architectures Hsi-Shou W (2018) Energy-efficient neural network architectures
33.
go back to reference Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and $<$ 0.5 mb model size. arXiv preprint arXiv:1602.07360 Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and $<$ 0.5 mb model size. arXiv preprint arXiv:1602.07360
36.
go back to reference Jolicoeur P (2012) Introduction to biometry. Springer, New York Jolicoeur P (2012) Introduction to biometry. Springer, New York
38.
go back to reference Krizhevsky A (2017) The cifar10/100 datasets Krizhevsky A (2017) The cifar10/100 datasets
39.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
40.
go back to reference lab FAR (2017) Torch: a scientific computing framework for luajit lab FAR (2017) Torch: a scientific computing framework for luajit
41.
42.
go back to reference LeCun Y (2017) The MNIST database of handwritten digits LeCun Y (2017) The MNIST database of handwritten digits
45.
go back to reference Lee C-Y, Gallagher P, Tu Z (2017) Generalizing pooling functions in CNNs: mixed, gated, and tree. IEEE Trans Pattern Anal Mach Intell PP(99):1 Lee C-Y, Gallagher P, Tu Z (2017) Generalizing pooling functions in CNNs: mixed, gated, and tree. IEEE Trans Pattern Anal Mach Intell PP(99):1
46.
go back to reference Li D, Chen X, Becchi M, Zong Z (2016) Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: 2016 IEEE international conferences on big data and cloud computing (BDCloud), social computing and networking (SocialCom), sustainable computing and communications, IEEE, pp 477–484 Li D, Chen X, Becchi M, Zong Z (2016) Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: 2016 IEEE international conferences on big data and cloud computing (BDCloud), social computing and networking (SocialCom), sustainable computing and communications, IEEE, pp 477–484
47.
go back to reference Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn 62:135–160CrossRef Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn 62:135–160CrossRef
48.
go back to reference Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRef Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRef
49.
go back to reference Mittal S (2012) A survey of architectural techniques for dram power management. Int J High Perform Syst Archit 4:110–119CrossRef Mittal S (2012) A survey of architectural techniques for dram power management. Int J High Perform Syst Archit 4:110–119CrossRef
51.
go back to reference Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: IEEE conference on computer vision and pattern recognition, CVPR’07, IEEE, pp 1–8 Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: IEEE conference on computer vision and pattern recognition, CVPR’07, IEEE, pp 1–8
52.
go back to reference Perronnin F, Sánchez J (2010) Improving the fisher kernel for large-scale image classification. Comput Vis ECCV 2010:143–156 Perronnin F, Sánchez J (2010) Improving the fisher kernel for large-scale image classification. Comput Vis ECCV 2010:143–156
53.
go back to reference Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8 Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8
54.
go back to reference Ren M, Liao R, Urtasun R, Sinz FH, Zemel RS (2016) Normalizing the normalizers: comparing and extending network normalization schemes. arXiv preprint arXiv:1611.04520 Ren M, Liao R, Urtasun R, Sinz FH, Zemel RS (2016) Normalizing the normalizers: comparing and extending network normalization schemes. arXiv preprint arXiv:1611.04520
55.
go back to reference Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105:222–245MathSciNetCrossRef Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105:222–245MathSciNetCrossRef
56.
go back to reference Scardapane S, Comminiello D, Hussain A (2017) Group sparse regularization for deep neural networks. Neurocomputing 241:81–89CrossRef Scardapane S, Comminiello D, Hussain A (2017) Group sparse regularization for deep neural networks. Neurocomputing 241:81–89CrossRef
57.
go back to reference Simonyan K, Vedaldi A, Zisserman A (2013) Deep fisher networks for large-scale image classification. In: Advances in neural information processing systems, pp 163–171 Simonyan K, Vedaldi A, Zisserman A (2013) Deep fisher networks for large-scale image classification. In: Advances in neural information processing systems, pp 163–171
58.
go back to reference Song Y, Zhang F, Li Q, Huang H (2017) Locally-transferred fisher vectors for texture classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4912–4920 Song Y, Zhang F, Li Q, Huang H (2017) Locally-transferred fisher vectors for texture classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4912–4920
59.
go back to reference Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH
60.
go back to reference Stehlík M, Kisel’ák J, Bukina E, Lu Y, Baran S (2020) Fredholm integral relation between compound estimation and prediction (FIRCEP). Stoch Anal Appl 38:427–459MathSciNetCrossRef Stehlík M, Kisel’ák J, Bukina E, Lu Y, Baran S (2020) Fredholm integral relation between compound estimation and prediction (FIRCEP). Stoch Anal Appl 38:427–459MathSciNetCrossRef
61.
go back to reference Sumner R (2014) Processing raw images in MATLAB. University of California Sata Cruz, Department of Electrical Engineering, Sata Cruz Sumner R (2014) Processing raw images in MATLAB. University of California Sata Cruz, Department of Electrical Engineering, Sata Cruz
62.
go back to reference Sun M, Song Z, Jiang X, Pan J, Pang Y (2017) Learning pooling for convolutional neural network. Neurocomputing 224:96–104CrossRef Sun M, Song Z, Jiang X, Pan J, Pang Y (2017) Learning pooling for convolutional neural network. Neurocomputing 224:96–104CrossRef
63.
go back to reference Sydorov V et al (2014) Deep fisher kernels-end to end learning of the fisher kernel GMM parameters. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1402–1409 Sydorov V et al (2014) Deep fisher kernels-end to end learning of the fisher kernel GMM parameters. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1402–1409
64.
go back to reference Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105:2295–2329CrossRef Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105:2295–2329CrossRef
65.
go back to reference Tang P, Wang X, Shi B, Bai X, Liu W, Tu Z (2016) Deep fishernet for object classification. arXiv preprint arXiv:1608.00182 Tang P, Wang X, Shi B, Bai X, Liu W, Tu Z (2016) Deep fishernet for object classification. arXiv preprint arXiv:1608.00182
66.
go back to reference Tong Z, Aihara K, Tanaka G (2016) A hybrid pooling method for convolutional neural networks. In: International conference on neural information processing, Springer, pp 454–461 Tong Z, Aihara K, Tanaka G (2016) A hybrid pooling method for convolutional neural networks. In: International conference on neural information processing, Springer, pp 454–461
67.
go back to reference Wager S, Wang S, Liang PS (2013) Dropout training as adaptive regularization. In: Advances in neural information processing systems, pp 351–359 Wager S, Wang S, Liang PS (2013) Dropout training as adaptive regularization. In: Advances in neural information processing systems, pp 351–359
68.
go back to reference Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066 Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066
69.
go back to reference Wu H, Gu X (2015) Max-pooling dropout for regularization of convolutional neural networks. In: International conference on neural information processing, Springer, pp 46–54 Wu H, Gu X (2015) Max-pooling dropout for regularization of convolutional neural networks. In: International conference on neural information processing, Springer, pp 46–54
70.
go back to reference Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1249–1258 Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1249–1258
71.
go back to reference Xie L, Tian Q, Zhang B (2016) Simple techniques make sense: feature pooling and normalization for image classification. IEEE Trans Circuits Syst Video Technol 26:1251–1264CrossRef Xie L, Tian Q, Zhang B (2016) Simple techniques make sense: feature pooling and normalization for image classification. IEEE Trans Circuits Syst Video Technol 26:1251–1264CrossRef
72.
go back to reference Xu Z, Yang Y, Hauptmann AG (2015) A discriminative CNN video representation for event detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1798–1807 Xu Z, Yang Y, Hauptmann AG (2015) A discriminative CNN video representation for event detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1798–1807
73.
go back to reference Yu Z, Ni D, Chen S, Qin J, Li S, Wang T, Lei B (2017) Hybrid dermoscopy image classification framework based on deep convolutional neural network and fisher vector. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI, 2017), IEEE, pp 301–304 Yu Z, Ni D, Chen S, Qin J, Li S, Wang T, Lei B (2017) Hybrid dermoscopy image classification framework based on deep convolutional neural network and fisher vector. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI, 2017), IEEE, pp 301–304
74.
go back to reference Zeiler M, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. In: Proceedings of the international conference on learning representation (ICLR) Zeiler M, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. In: Proceedings of the international conference on learning representation (ICLR)
Metadata
Title
The Mode-Fisher pooling for time complexity optimization in deep convolutional neural networks
Authors
Dou El Kefel Mansouri
Bachir Kaddar
Seif-Eddine Benkabou
Khalid Benabdeslem
Publication date
15-10-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05406-4

Other articles of this Issue 12/2021

Neural Computing and Applications 12/2021 Go to the issue

Premium Partner