Skip to main content
Top

2024 | OriginalPaper | Chapter

The Noncommutative Singer-Wermer Conjecture and Generalized Skew Derivations

Authors : Feng Wei, Jing-Xiong Xu

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The noncommutative Singer-Wermer conjecture states that every linear derivation on a noncommutative Banach algebra maps into its Jacobson radical. This conjecture is still an open question for more than thirty years. In this paper, the question of when a generalized skew derivation on a Banach algebra has quasinilpotent values is considered and how this question is related to the noncommutative Singer-Wermer conjecture is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brešar, M., Villena, A.R.: The noncommutative Singer-Wermer conjecture and \(\phi \)-derivations. J. London Math. Soc. 66, 710–720 (2002)MathSciNetCrossRef Brešar, M., Villena, A.R.: The noncommutative Singer-Wermer conjecture and \(\phi \)-derivations. J. London Math. Soc. 66, 710–720 (2002)MathSciNetCrossRef
2.
go back to reference Cusack, J.: Automatic continuity and topologically simple radical Banach algebras. J. London Math. Soc. 16, 493–500 (1977)MathSciNetCrossRef Cusack, J.: Automatic continuity and topologically simple radical Banach algebras. J. London Math. Soc. 16, 493–500 (1977)MathSciNetCrossRef
3.
go back to reference Dales, H.G.: Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, Oxford University Press (2000) Dales, H.G.: Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, Oxford University Press (2000)
4.
6.
go back to reference Johnson, B.E., Sinclair, A.M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90, 1067–1073 (1968)MathSciNetCrossRef Johnson, B.E., Sinclair, A.M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90, 1067–1073 (1968)MathSciNetCrossRef
7.
8.
9.
go back to reference Jung, Y.-S., Park, K.-H.: On generalized \((\alpha, \beta )\)-derivations and communitivity in prime rings. Bull. Korean Math. Soc. 43, 101–106 (2006)MathSciNetCrossRef Jung, Y.-S., Park, K.-H.: On generalized \((\alpha, \beta )\)-derivations and communitivity in prime rings. Bull. Korean Math. Soc. 43, 101–106 (2006)MathSciNetCrossRef
10.
go back to reference Jung, Y.-S., Park, K.-H.: Noncommutative versions of the Singer-Wermer conjecture with linear left \(\theta \)-derivations. Acta Math. Sinica 24, 1891–1900 (2008)MathSciNetCrossRef Jung, Y.-S., Park, K.-H.: Noncommutative versions of the Singer-Wermer conjecture with linear left \(\theta \)-derivations. Acta Math. Sinica 24, 1891–1900 (2008)MathSciNetCrossRef
11.
go back to reference Kim, B.-D.: Jordan derivations of semiprime rings and noncommutative Banach algebras. II. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 15, 259–296 (2008) Kim, B.-D.: Jordan derivations of semiprime rings and noncommutative Banach algebras. II. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 15, 259–296 (2008)
12.
go back to reference Kim, B.-D.: Jordan derivations of semiprime rings and noncommutative Banach algebras. I. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 15, 179–201 (2008) Kim, B.-D.: Jordan derivations of semiprime rings and noncommutative Banach algebras. I. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 15, 179–201 (2008)
13.
go back to reference Kim, B.-D.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sinica 16, 21–28 (2000)MathSciNetCrossRef Kim, B.-D.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sinica 16, 21–28 (2000)MathSciNetCrossRef
15.
go back to reference Park, K.-H., Jung, Y.-S., Bae, J.-H.: Derivations in Banach algebras. Int. J. Math. Math. Sci. 29(10), 579–583 (2002)MathSciNetCrossRef Park, K.-H., Jung, Y.-S., Bae, J.-H.: Derivations in Banach algebras. Int. J. Math. Math. Sci. 29(10), 579–583 (2002)MathSciNetCrossRef
17.
go back to reference Sinclair, A.M.: Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, vol. 21. Cambridge University Press, Cambridge (1976)CrossRef Sinclair, A.M.: Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, vol. 21. Cambridge University Press, Cambridge (1976)CrossRef
20.
go back to reference Thomas, M.P.: Primitive ideals and derivations on non-commutative Banach algebras. Pacific J. Math. 159, 139–152 (1993)MathSciNetCrossRef Thomas, M.P.: Primitive ideals and derivations on non-commutative Banach algebras. Pacific J. Math. 159, 139–152 (1993)MathSciNetCrossRef
21.
22.
go back to reference Wei, F., Xiao, Z.-K.: Pair of derivetions on rings and Banach algebras. Demonstratio Math. 41, 297–308 (2008)MathSciNet Wei, F., Xiao, Z.-K.: Pair of derivetions on rings and Banach algebras. Demonstratio Math. 41, 297–308 (2008)MathSciNet
Metadata
Title
The Noncommutative Singer-Wermer Conjecture and Generalized Skew Derivations
Authors
Feng Wei
Jing-Xiong Xu
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_14

Premium Partner