Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2018

08-10-2018

The optimization of microwave dielectric properties of the Li2ZnTi3O8 ceramic by the phase purity control

Authors: Bin Tang, Moke Zhou, Yingxiang Li, Fei Wang, Shuren Zhang

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent reports, the microwave dielectric properties of Li2ZnTi3O8 ceramic deviate largely from the optimal value. In this paper by the Rietveld refinement method, the co-existence of the secondary phases is confirmed which is due to the zinc volatilization. Thus, the excessive ZnO addition is introduced to obtain a high purity Li2ZnTi3O8 phase. Microwave dielectric properties are theoretically calculated to prove the above statement, based on the property indices of these phases. The calculated result is consistent to the measured data, with relative deviation around 5%. The optimized properties make the ceramic a promising ceramic candidate for the microwave applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008), pp. 1–2CrossRef M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008), pp. 1–2CrossRef
2.
go back to reference D.W. Wang, D. Zhou, Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6, 2438–2444 (2018)CrossRef D.W. Wang, D. Zhou, Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6, 2438–2444 (2018)CrossRef
3.
go back to reference S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef
4.
go back to reference J. Zhang, R.Z. Zuo, Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. 27, 7962–7968 (2016) J. Zhang, R.Z. Zuo, Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. 27, 7962–7968 (2016)
5.
go back to reference C.J. Pei, X.S. Hu, G.G. Yao, H.Q. Yang, Reaction-sintering method for microwave dielectric Li2CoTi3O8 ceramic. Ferroelectrics 505, 4–9 (2016)CrossRef C.J. Pei, X.S. Hu, G.G. Yao, H.Q. Yang, Reaction-sintering method for microwave dielectric Li2CoTi3O8 ceramic. Ferroelectrics 505, 4–9 (2016)CrossRef
6.
go back to reference X.P. Lu, Y. Zheng, Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Electron. Mater. 44, 4243–4249 (2015)CrossRef X.P. Lu, Y. Zheng, Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Electron. Mater. 44, 4243–4249 (2015)CrossRef
7.
go back to reference P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater. Lett. 123, 195–197 (2014)CrossRef P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater. Lett. 123, 195–197 (2014)CrossRef
8.
go back to reference Y. Bao, G.H. Chen, M.Z. Hou, Y. Yang, Z.P. Han, K.N. Deng, Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O–MgO–B2O3 frit. Trans. Nonferrous Met. Soc. China 23, 3318–3323 (2013)CrossRef Y. Bao, G.H. Chen, M.Z. Hou, Y. Yang, Z.P. Han, K.N. Deng, Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O–MgO–B2O3 frit. Trans. Nonferrous Met. Soc. China 23, 3318–3323 (2013)CrossRef
9.
go back to reference L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, Microwave dielectric properties of temperature Li2ZnxCo1–xTi3O8 ceramics. J. Alloys Compd. 509, 8840–8844 (2011)CrossRef L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, Microwave dielectric properties of temperature Li2ZnxCo1–xTi3O8 ceramics. J. Alloys Compd. 509, 8840–8844 (2011)CrossRef
10.
go back to reference Y.X. Li, H. Li, J.S. Li, B. Tang, S.R. Zhang, H.T. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+xO8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRef Y.X. Li, H. Li, J.S. Li, B. Tang, S.R. Zhang, H.T. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+xO8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRef
11.
go back to reference X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRef X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRef
12.
go back to reference G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dpant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dpant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef
13.
go back to reference X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, Phase structure and microwave dielectric properties of (1−x)Li2Zn3Ti4O12–xTiO2 ceramics. J. Alloys Compd. 515, 22–25 (2012)CrossRef X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, Phase structure and microwave dielectric properties of (1−x)Li2Zn3Ti4O12–xTiO2 ceramics. J. Alloys Compd. 515, 22–25 (2012)CrossRef
14.
go back to reference L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef
15.
go back to reference Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)CrossRef Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)CrossRef
16.
go back to reference S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1−x)BaTi4O9–xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)CrossRef S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1−x)BaTi4O9–xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)CrossRef
17.
go back to reference S. Yoon, G. Choi, D. Kim, S. Cho, K. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4–xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRef S. Yoon, G. Choi, D. Kim, S. Cho, K. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4–xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRef
18.
go back to reference K. Surendran, P. Bijumon, P. Mohanan, M. Sebastian, (1−x)MgAl2O4−xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)CrossRef K. Surendran, P. Bijumon, P. Mohanan, M. Sebastian, (1−x)MgAl2O4−xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)CrossRef
19.
go back to reference N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRef N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRef
20.
go back to reference B. Fu, Y. Zhang, H. Yue, Microwave dielectric properties of (1−x)ZnTa2O6–xMgNb2O6 ceramics. Ceram. Int. 39, 3789–3793 (2013)CrossRef B. Fu, Y. Zhang, H. Yue, Microwave dielectric properties of (1−x)ZnTa2O6–xMgNb2O6 ceramics. Ceram. Int. 39, 3789–3793 (2013)CrossRef
Metadata
Title
The optimization of microwave dielectric properties of the Li2ZnTi3O8 ceramic by the phase purity control
Authors
Bin Tang
Moke Zhou
Yingxiang Li
Fei Wang
Shuren Zhang
Publication date
08-10-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0105-y

Other articles of this Issue 23/2018

Journal of Materials Science: Materials in Electronics 23/2018 Go to the issue