Skip to main content
Top

2024 | OriginalPaper | Chapter

The Partition Function Modulo 4

Author : Ken Ono

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is widely believed that the parity of the partition function p(n) is “random”. Contrary to this expectation, in this note we prove the existence of infinitely many congruence relations modulo 4 among its values. For each square-free integer \(1<D\equiv 23\pmod {24},\) we construct a weight 2 meromorphic modular form that is congruent modulo 4 to a certain twisted generating function for the numbers \(p\big (\frac{Dm^2+1}{24}\big )\pmod 4\). We prove the existence of infinitely many linear dependence congruences modulo 4 among suitable sets of holomorphic normalizations of these series. These results rely on the theory of class numbers and Hilbert class polynomials, and generalized twisted Borcherds products developed by Bruinier and the author.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We note that \(p(\alpha ):=0\) for non-integral \(\alpha \).
 
Literature
1.
go back to reference Ahlgren, S.: Distribution of parity of the partition function in arithmetic progressions, Indagationes Math. (N.S.) 10, 173–181 (1999) Ahlgren, S.: Distribution of parity of the partition function in arithmetic progressions, Indagationes Math. (N.S.) 10, 173–181 (1999)
3.
go back to reference Ahlgren, S., Ono, K.: Congruence properties for the partition function. Proc. Natl. Acad. Sci. USA 98, 12882–12884 (2001) Ahlgren, S., Ono, K.: Congruence properties for the partition function. Proc. Natl. Acad. Sci. USA 98, 12882–12884 (2001)
4.
go back to reference Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1984)CrossRef Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1984)CrossRef
6.
go back to reference Atkin, A.O.L.: Multiplicative congruence properties and density problems for \(p(n)\). Proc. London Math. Soc. 18(3), 563–576 (1968) Atkin, A.O.L.: Multiplicative congruence properties and density problems for \(p(n)\). Proc. London Math. Soc. 18(3), 563–576 (1968)
7.
go back to reference Atkin, A.O.L., O’Brien, J.N.: Some properties of \(p(n)\) and \(c(n)\) modulo powers of 13. Trans. Am. Math. Soc. 126, 442–459 (1967)MathSciNet Atkin, A.O.L., O’Brien, J.N.: Some properties of \(p(n)\) and \(c(n)\) modulo powers of 13. Trans. Am. Math. Soc. 126, 442–459 (1967)MathSciNet
8.
go back to reference Borcherds, R.E.: Automorphic forms on \(O_{s+2,2}({\mathbb{R} })\) and infinite products. Invent. Math. 120, 161–213 (1995)MathSciNetCrossRef Borcherds, R.E.: Automorphic forms on \(O_{s+2,2}({\mathbb{R} })\) and infinite products. Invent. Math. 120, 161–213 (1995)MathSciNetCrossRef
9.
10.
go back to reference Boylan, M., Ono, K.: Parity of the partition function in arithmetic progressions II. Bull. Lond. Math. Soc. 33, 558–564 (2001)MathSciNetCrossRef Boylan, M., Ono, K.: Parity of the partition function in arithmetic progressions II. Bull. Lond. Math. Soc. 33, 558–564 (2001)MathSciNetCrossRef
11.
go back to reference Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, vol. 64. American Mathematical Society, Providence (2017)CrossRef Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, vol. 64. American Mathematical Society, Providence (2017)CrossRef
12.
go back to reference Bringmann, K., Ono, K.: The \(f(q)\) mock theta function conjecture and partition ranks. Invent. Math. 165, 243–266 (2006)MathSciNetCrossRef Bringmann, K., Ono, K.: The \(f(q)\) mock theta function conjecture and partition ranks. Invent. Math. 165, 243–266 (2006)MathSciNetCrossRef
15.
go back to reference Bruinier, J.H., Ono, K.: Heegner divisors, \(L\) -functions and harmonic weak Maass forms. Ann. Math. 172, 2135–2181 (2010)MathSciNetCrossRef Bruinier, J.H., Ono, K.: Heegner divisors, \(L\) -functions and harmonic weak Maass forms. Ann. Math. 172, 2135–2181 (2010)MathSciNetCrossRef
16.
go back to reference Garvan, F., Stanton, D.: Sieved partition functions and \(q\) -binomial coefficients. Math. Comput. 55, 299–311 (1990)MathSciNet Garvan, F., Stanton, D.: Sieved partition functions and \(q\) -binomial coefficients. Math. Comput. 55, 299–311 (1990)MathSciNet
17.
go back to reference Griffin, M., Ono, K., Tsai, W.-L.: Heights of points on elliptic curves over \({\mathbb{Q} }\). Proc. Am. Math. Soc. 149, 5093–5100 (2021)MathSciNetCrossRef Griffin, M., Ono, K., Tsai, W.-L.: Heights of points on elliptic curves over \({\mathbb{Q} }\). Proc. Am. Math. Soc. 149, 5093–5100 (2021)MathSciNetCrossRef
20.
go back to reference Hirschhorn, M., Hunt, D.C.: A simple proof of the Ramanujan conjecture for powers of \(5\). J. Reine Angew. Math. 326, 1–17 (1981)MathSciNet Hirschhorn, M., Hunt, D.C.: A simple proof of the Ramanujan conjecture for powers of \(5\). J. Reine Angew. Math. 326, 1–17 (1981)MathSciNet
22.
go back to reference Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence, RI (2004) Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence, RI (2004)
24.
go back to reference Lovejoy, J., Ono, K.: Extension of Ramanujan’s congruences for the partition function modulo powers of 5. J. Reine Ange. Math. 542, 123–132 (2002)MathSciNet Lovejoy, J., Ono, K.: Extension of Ramanujan’s congruences for the partition function modulo powers of 5. J. Reine Ange. Math. 542, 123–132 (2002)MathSciNet
25.
go back to reference Mirsky, L.: The distribution of values of the partition function in residue classes. J. Math. Anal. Appl. 93, 593–598 (1983)MathSciNetCrossRef Mirsky, L.: The distribution of values of the partition function in residue classes. J. Math. Anal. Appl. 93, 593–598 (1983)MathSciNetCrossRef
26.
go back to reference Newman, M.: Periodicity modulo \(m\) and divisibility properties of the partition function. Trans. Am. Math. Soc. 97, 225–236 (1960)MathSciNet Newman, M.: Periodicity modulo \(m\) and divisibility properties of the partition function. Trans. Am. Math. Soc. 97, 225–236 (1960)MathSciNet
27.
go back to reference Newman, M.: Congruences for the coefficients of modular forms and some new congruences for the partition function. Canadian J. Math. 9, 549–552 (1957)MathSciNetCrossRef Newman, M.: Congruences for the coefficients of modular forms and some new congruences for the partition function. Canadian J. Math. 9, 549–552 (1957)MathSciNetCrossRef
28.
go back to reference Nicolas, J.-L.: On the parity of generalized partition functions. II. Period. Math. Hungar. 43, 177–189 (2001) Nicolas, J.-L.: On the parity of generalized partition functions. II. Period. Math. Hungar. 43, 177–189 (2001)
29.
30.
go back to reference Nicolas, J.-L.: Parité des valeurs de la fonction de partition \(p(n)\)et anatomie des entiers (French. English summary) [Parity of the values of the partition function\(p(n)\)and anatomy of the integers, Anatomy of integers, pages 97–113, CRM Proc. Lecture Notes, vol. 46. American Mathematical Society , Providence, RI (2008) Nicolas, J.-L.: Parité des valeurs de la fonction de partition \(p(n)\)et anatomie des entiers (French. English summary) [Parity of the values of the partition function\(p(n)\)and anatomy of the integers, Anatomy of integers, pages 97–113, CRM Proc. Lecture Notes, vol. 46. American Mathematical Society , Providence, RI (2008)
31.
go back to reference Nicolas, J.-L., Ruzsa, I.Z., Sárközy, A.: On the parity of additive representation functions (appendix by J.-P. Serre). J. Number Th. 73, 292–317 (1998) Nicolas, J.-L., Ruzsa, I.Z., Sárközy, A.: On the parity of additive representation functions (appendix by J.-P. Serre). J. Number Th. 73, 292–317 (1998)
32.
go back to reference Ono, K.: Parity of the partition function in arithmetic progressions. J. Reine Angew. Math. 472, 1–15 (1996)MathSciNet Ono, K.: Parity of the partition function in arithmetic progressions. J. Reine Angew. Math. 472, 1–15 (1996)MathSciNet
35.
go back to reference Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, Somerville, Ma, pp. 347–454 (2009) Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, Somerville, Ma, pp. 347–454 (2009)
37.
go back to reference Parkin, T.R., Shanks, D.: On the distribution of parity in the partition function. Math. Comput. 21, 466–480 (1967)MathSciNetCrossRef Parkin, T.R., Shanks, D.: On the distribution of parity in the partition function. Math. Comput. 21, 466–480 (1967)MathSciNetCrossRef
38.
go back to reference Radu, C.-S.: A proof of Subbarao’s conjecture. J. Reine Angew. Math. Math. 672, 161–175 (2012)MathSciNet Radu, C.-S.: A proof of Subbarao’s conjecture. J. Reine Angew. Math. Math. 672, 161–175 (2012)MathSciNet
39.
go back to reference Ramanujan, S.: Congruence properties of partitions. Proc. Lond. Math. Soc. 19(2), 207–210 Ramanujan, S.: Congruence properties of partitions. Proc. Lond. Math. Soc. 19(2), 207–210
40.
go back to reference Ramanujan, S.: Ramanujan’s unpublished manuscript on the partition and tau-functions (Commentary by B. C. Berndt and K. Ono) The Andrews Festschrift (Ed. D. Foata and G.-N. Han), pp. 39–110. Springer, Berlin (2001) Ramanujan, S.: Ramanujan’s unpublished manuscript on the partition and tau-functions (Commentary by B. C. Berndt and K. Ono) The Andrews Festschrift (Ed. D. Foata and G.-N. Han), pp. 39–110. Springer, Berlin (2001)
41.
go back to reference Sturm, J.: On the congruence of modular forms. Springer Lecture Notes in Mathematics, vol. 1240, pp. 275–280. Springer, Berlin (1984) Sturm, J.: On the congruence of modular forms. Springer Lecture Notes in Mathematics, vol. 1240, pp. 275–280. Springer, Berlin (1984)
43.
44.
go back to reference Zagier, D.: Traces of singular moduli. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), pp. 211–244. International Press Lecture Series, vol. 3, I, International Press, Somerville, MA Zagier, D.: Traces of singular moduli. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), pp. 211–244. International Press Lecture Series, vol. 3, I, International Press, Somerville, MA
45.
go back to reference Zagier, D.: Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and Bringmann-Ono], Séminaire Bourbaki, no. 986 (2006) Zagier, D.: Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and Bringmann-Ono], Séminaire Bourbaki, no. 986 (2006)
46.
go back to reference Zwegers, S.P.: Mock \({\vartheta }\) -functions and real analytic modular forms, \(q\)-series with applications to combinatorics, number theory, and physics. In: Berndt, B.C., Ono, K. (eds.), Contemporary Mathematics, vol. 291, pp. 269–277. American Mathematical Society (2001) Zwegers, S.P.: Mock \({\vartheta }\) -functions and real analytic modular forms, \(q\)-series with applications to combinatorics, number theory, and physics. In: Berndt, B.C., Ono, K. (eds.), Contemporary Mathematics, vol. 291, pp. 269–277. American Mathematical Society (2001)
47.
go back to reference Zwegers, S.: Mock theta functions, Ph.D. thesis (Advisor: D. Zagier), Universiteit Utrecht (2002) Zwegers, S.: Mock theta functions, Ph.D. thesis (Advisor: D. Zagier), Universiteit Utrecht (2002)
Metadata
Title
The Partition Function Modulo 4
Author
Ken Ono
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_4

Premium Partner