Skip to main content
Top
Published in: Quantum Information Processing 10/2019

01-10-2019

The performance of reference-frame-independent measurement-device-independent quantum key distribution

Authors: Qinyu Xue, Rongzhen Jiao

Published in: Quantum Information Processing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reference-frame-independent measurement-device-independent quantum key distribution (RFI–MDI–QKD) is a promising approach for practical quantum communication. The detector side channel attacks could be removed without aligning the reference frames. By considering the statistical fluctuations, background counting rate and the polarization misalignment fluctuation, the performance of the RFI–MDI–QKD is analyzed under the condition of one, two and infinite decoy states. Moreover, the numerical simulation results are presented which offer significant reference for practical applications of RFI–MDI–QKD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennet, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers. pp. 175–179, Systems, and signal processing IEEE, New York (2011) Bennet, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers. pp. 175–179, Systems, and signal processing IEEE, New York (2011)
2.
go back to reference Lo, H.K., Lutkenhaus, N.: Quantum cryptography: from theory to practice. Physics 5, 10–15 (2007) Lo, H.K., Lutkenhaus, N.: Quantum cryptography: from theory to practice. Physics 5, 10–15 (2007)
3.
go back to reference Jiao, R.Z., Tang, S.J., Zhang, C.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica 61(5), 050302–379 (2012) Jiao, R.Z., Tang, S.J., Zhang, C.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica 61(5), 050302–379 (2012)
4.
go back to reference Sheng, Y.B., Zhou, L., Cheng, W.W.: Complete Bell-state analysis for a single-photon hybrid entangled state. Chin. Phys. B 22(3), 179–183 (2013)CrossRef Sheng, Y.B., Zhou, L., Cheng, W.W.: Complete Bell-state analysis for a single-photon hybrid entangled state. Chin. Phys. B 22(3), 179–183 (2013)CrossRef
5.
go back to reference Sun, Y., Zhao, S.H., Dong, C.: Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica 64(14), 60–64 (2015) Sun, Y., Zhao, S.H., Dong, C.: Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica 64(14), 60–64 (2015)
6.
go back to reference Gottesman, D., Lo, H.K., Lutkenhaus, N.: Security of quantum key distribution with imperfect devices. Quantum Inf. 4(5), 325–360 (2004)MathSciNetMATH Gottesman, D., Lo, H.K., Lutkenhaus, N.: Security of quantum key distribution with imperfect devices. Quantum Inf. 4(5), 325–360 (2004)MathSciNetMATH
7.
go back to reference Zhao, Y., Fung, C.H., Qi, B., et al.: Quantum Hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A 78(4), 4702–4705 (2007) Zhao, Y., Fung, C.H., Qi, B., et al.: Quantum Hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A 78(4), 4702–4705 (2007)
8.
go back to reference Lydersen, L.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)ADSCrossRef Lydersen, L.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)ADSCrossRef
9.
go back to reference Jain, N., Wittmann, C., Lydersen, L.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADSCrossRef Jain, N., Wittmann, C., Lydersen, L.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADSCrossRef
10.
go back to reference Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 3818–3821 (2012)CrossRef Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 3818–3821 (2012)CrossRef
11.
go back to reference Dong, C., Zhao, S.H., Zhao, W.H.: Analysis of measurement-device-independent quantum-key-distribution under asymmetric channel transmitterance efficiency. Quantum Inf. Process. 13(11), 2525–2534 (2014)ADSMathSciNetMATHCrossRef Dong, C., Zhao, S.H., Zhao, W.H.: Analysis of measurement-device-independent quantum-key-distribution under asymmetric channel transmitterance efficiency. Quantum Inf. Process. 13(11), 2525–2534 (2014)ADSMathSciNetMATHCrossRef
12.
go back to reference Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRef Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRef
13.
go back to reference Lo, H.K., Curty, M., Qi, B.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 4089–4091 (2012)CrossRef Lo, H.K., Curty, M., Qi, B.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 4089–4091 (2012)CrossRef
14.
go back to reference Xu, F., Curty, M., Qi, B.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(21), 113007 (2013)ADSCrossRef Xu, F., Curty, M., Qi, B.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(21), 113007 (2013)ADSCrossRef
15.
go back to reference Tamaki, K., Lo, H.K., Fung, C.H.F.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307 (2012)ADSCrossRef Tamaki, K., Lo, H.K., Fung, C.H.F.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307 (2012)ADSCrossRef
16.
go back to reference Shan, Y.Z., Sun, S.H., Ma, X.C., et al.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90(4), 085202 (2014)CrossRef Shan, Y.Z., Sun, S.H., Ma, X.C., et al.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90(4), 085202 (2014)CrossRef
17.
go back to reference Yin, Z.Q., Fung, C.H.F., Ma, X.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88(6), 062322: 1-9 (2013)ADS Yin, Z.Q., Fung, C.H.F., Ma, X.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88(6), 062322: 1-9 (2013)ADS
18.
go back to reference Tang, Z., Liao, Z., Xu, F.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)ADSCrossRef Tang, Z., Liao, Z., Xu, F.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)ADSCrossRef
19.
go back to reference Liu, Y., Chen, T.Y., Wang, L.J.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)ADSCrossRef Liu, Y., Chen, T.Y., Wang, L.J.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)ADSCrossRef
20.
go back to reference Laing, A., Scarani, V., Rarity, J.G.: Reference frame independent quantum key distribution. Phys. Rev. A 82(1), 7261–7265 (2010)CrossRef Laing, A., Scarani, V., Rarity, J.G.: Reference frame independent quantum key distribution. Phys. Rev. A 82(1), 7261–7265 (2010)CrossRef
21.
go back to reference Yin, Z.Q., Wang, S., Chen, W., Li, H.W., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Quantum Inf. Comput. 13, 1237 (2014)ADSCrossRef Yin, Z.Q., Wang, S., Chen, W., Li, H.W., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Quantum Inf. Comput. 13, 1237 (2014)ADSCrossRef
22.
go back to reference Zhang, C.M., Zhu, J.R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 95, 032309 (2017)ADSCrossRef Zhang, C.M., Zhu, J.R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 95, 032309 (2017)ADSCrossRef
23.
go back to reference Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)ADSCrossRef Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)ADSCrossRef
24.
go back to reference Wang, C., Sun, S.H., Ma, X.C., Tang, G.Z., Liang, L.M.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015)ADSCrossRef Wang, C., Sun, S.H., Ma, X.C., Tang, G.Z., Liang, L.M.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015)ADSCrossRef
25.
go back to reference Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef
26.
go back to reference Sun, S.H., Gao, M., Li, C.Y.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)ADSCrossRef Sun, S.H., Gao, M., Li, C.Y.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)ADSCrossRef
27.
go back to reference Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRef Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRef
28.
go back to reference Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: The security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: The security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH
29.
go back to reference Liu, H.W., Wang, J.P., Ma, H.Q., Sun, S.H.: Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optical 902, 330085 (2018)ADS Liu, H.W., Wang, J.P., Ma, H.Q., Sun, S.H.: Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optical 902, 330085 (2018)ADS
30.
go back to reference Ma, X., Qi, B., Zhao, Y.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 1–127 (2005)CrossRef Ma, X., Qi, B., Zhao, Y.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 1–127 (2005)CrossRef
31.
go back to reference Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305: 1-7 (2012)ADSCrossRef Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305: 1-7 (2012)ADSCrossRef
Metadata
Title
The performance of reference-frame-independent measurement-device-independent quantum key distribution
Authors
Qinyu Xue
Rongzhen Jiao
Publication date
01-10-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2420-5

Other articles of this Issue 10/2019

Quantum Information Processing 10/2019 Go to the issue