Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2017

08-09-2017

The piezoelectric and dielectric properties of sodium–potassium niobate ceramics with new multiphase boundary

Authors: Fenglian Li, Qian Gou, Jie Xing, Zhi Tan, Laiming Jiang, Lixu Xie, Jiagang Wu, Wen Zhang, Dingquan Xiao, Jianguo Zhu

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

KNN based lead free piezo-ceramics with new additive (Bi0.45La0.05K0.5)ZrO3 (BLKZ) doping have been prepared by conventional solid-state sintering method. The effect of BLKZ content on phase structure evolution was investigated through the X-ray diffraction and the Rietveld refinement method. Both the XRD and Rietveld refinement confirmed a coexistence of rhombohedral–orthorhombic–tetragonal (R–O–T) multiphase in the BLKZ adding KNN systems. The study of the BLKZ content on the phase transition temperature of the ceramics manifested that the BLKZ could modify the phase transition temperature of rhombohedral–orthorhombic (T R–O) and orthorhombic–tetragonal (T O–T) to room temperature simultaneously, thus, a new R–O–T multiphase coexistence boundary would be constructed in the KNN systems. A piezoelectric coefficient of d 33 ~ 385 pC/N with a T c of 245 °C were observed in the KNN ceramics when the BLKZ content is 3.5 mol%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.S. Luo, G.S. Xu, H.Q. Xu, P.C. Wang, Z.W. Yin, Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys. 39, 5581 (2000)CrossRef H.S. Luo, G.S. Xu, H.Q. Xu, P.C. Wang, Z.W. Yin, Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys. 39, 5581 (2000)CrossRef
2.
go back to reference T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Dielectric behavior of single crystals near the (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 morphtropic phase boundary. Ferroelectr. Lett. 12, 63 (1990)CrossRef T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Dielectric behavior of single crystals near the (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 morphtropic phase boundary. Ferroelectr. Lett. 12, 63 (1990)CrossRef
3.
go back to reference G.H. Lee, D.-J. Shin, Y.-H. Kwon, S.-J. Jeong, J.-H. Koh, Optimized piezoelectric and structural properties of (Bi,Na)TiO3–(Bi,K)TiO3 ceramics for energy harvester applications. Ceram. Int. 42, 14355 (2016)CrossRef G.H. Lee, D.-J. Shin, Y.-H. Kwon, S.-J. Jeong, J.-H. Koh, Optimized piezoelectric and structural properties of (Bi,Na)TiO3–(Bi,K)TiO3 ceramics for energy harvester applications. Ceram. Int. 42, 14355 (2016)CrossRef
4.
go back to reference C. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934 (2008)CrossRef C. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934 (2008)CrossRef
5.
go back to reference J.F. Ma, X.Y. Liu, C.G. Zhou, C.L. Yuan, W.H. Li, M.H. Jiang, Enhancement of the dielectric piezoelectric and ferroelectric properties in 3 modified Ba0.85Ca0.15Ti0.9Zr0. 3 lead free ceramics. Ceram. Int. 40, 2979 (2014)CrossRef J.F. Ma, X.Y. Liu, C.G. Zhou, C.L. Yuan, W.H. Li, M.H. Jiang, Enhancement of the dielectric piezoelectric and ferroelectric properties in 3 modified Ba0.85Ca0.15Ti0.9Zr0. 3 lead free ceramics. Ceram. Int. 40, 2979 (2014)CrossRef
6.
go back to reference W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)CrossRef W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)CrossRef
7.
go back to reference Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezo-ceramics. Lett. Nat. 432, 81 (2004)CrossRef Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezo-ceramics. Lett. Nat. 432, 81 (2004)CrossRef
8.
go back to reference K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28, 8519 (2016)CrossRef K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28, 8519 (2016)CrossRef
9.
go back to reference T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 2 (2017) T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 2 (2017)
10.
go back to reference J. Rödela, K.G. Webbera, R. Dittmera, W. Job, M. Kimurac, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRef J. Rödela, K.G. Webbera, R. Dittmera, W. Job, M. Kimurac, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRef
11.
go back to reference H. Tao, D.Q. Xiao, C. Liu, F.X. Li, B. Wu, J.G. Wu, J.G. Zhu, Effect of SrZrO3 on phase structure and electrical properties of 0.974(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3 lead-free ceramics. Ceram. Int. 40, 2731 (2014)CrossRef H. Tao, D.Q. Xiao, C. Liu, F.X. Li, B. Wu, J.G. Wu, J.G. Zhu, Effect of SrZrO3 on phase structure and electrical properties of 0.974(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3 lead-free ceramics. Ceram. Int. 40, 2731 (2014)CrossRef
12.
go back to reference H. Pohlmann, J.J. Wang, B. Wang, L.Q. Chen, A thermodynamic potential and the temperature-composition phase diagram for single-crystalline K1–xNaxNbO3 (0 ≤ x ≤ 0.5). Appl. Phys. Lett. 110, 102906 (2017)CrossRef H. Pohlmann, J.J. Wang, B. Wang, L.Q. Chen, A thermodynamic potential and the temperature-composition phase diagram for single-crystalline K1–xNaxNbO3 (0 ≤ x ≤ 0.5). Appl. Phys. Lett. 110, 102906 (2017)CrossRef
13.
go back to reference I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: current status and perspectives. J. Adv. Dielectr. 03, 1330002 (2013)CrossRef I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: current status and perspectives. J. Adv. Dielectr. 03, 1330002 (2013)CrossRef
14.
go back to reference J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015)CrossRef J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015)CrossRef
15.
go back to reference J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013)CrossRef J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013)CrossRef
16.
go back to reference F.X. Li, D.Q. Xiao, J.G. Wu, Z. Wang, C. Liu, J.G. Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)ZrO3 lead-free ceramics with a sintering aid of ZnO. Ceram. Int. 40, 14601 (2014)CrossRef F.X. Li, D.Q. Xiao, J.G. Wu, Z. Wang, C. Liu, J.G. Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)ZrO3 lead-free ceramics with a sintering aid of ZnO. Ceram. Int. 40, 14601 (2014)CrossRef
17.
go back to reference Y. Chen, D.D. Xue, Y. Ma, K.H. Liu, Z.Q. Chen, X.Q. Jiang, Phase transitional behavior and electrical properties of (1 − x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3–xCaZrO3 lead-free ceramics. Phys. Lett. A 380, 2974 (2016)CrossRef Y. Chen, D.D. Xue, Y. Ma, K.H. Liu, Z.Q. Chen, X.Q. Jiang, Phase transitional behavior and electrical properties of (1 − x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3–xCaZrO3 lead-free ceramics. Phys. Lett. A 380, 2974 (2016)CrossRef
18.
go back to reference Y.J. Zhao, L.H. Wang, R.X. Huang, R.Z. Liu, H.P. Zhou, The correlation between the microstructure and macroscopic properties of (K,Na,Li)(Nb,Ta)O3 ceramic via rare earth oxide doping. Ceram. Int. 40, 2505 (2014)CrossRef Y.J. Zhao, L.H. Wang, R.X. Huang, R.Z. Liu, H.P. Zhou, The correlation between the microstructure and macroscopic properties of (K,Na,Li)(Nb,Ta)O3 ceramic via rare earth oxide doping. Ceram. Int. 40, 2505 (2014)CrossRef
19.
go back to reference P. Palei, P. Sonia, Kumar, Dielectric, ferroelectric and piezoelectric properties of (1 − x)[K0.5Na0.5NbO3]–x[LiSbO3] ceramics. J. Phys. Chem. Solids 73, 827 (2012)CrossRef P. Palei, P. Sonia, Kumar, Dielectric, ferroelectric and piezoelectric properties of (1 − x)[K0.5Na0.5NbO3]–x[LiSbO3] ceramics. J. Phys. Chem. Solids 73, 827 (2012)CrossRef
20.
go back to reference S. Wongsaenmai, S. Ananta, R. Yimnirun, Effect of Li addition on phase formation behavior and electrical properties of (K0.5Na0.5)NbO3 lead free ceramics. Ceram. Int. 38, 147 (2012)CrossRef S. Wongsaenmai, S. Ananta, R. Yimnirun, Effect of Li addition on phase formation behavior and electrical properties of (K0.5Na0.5)NbO3 lead free ceramics. Ceram. Int. 38, 147 (2012)CrossRef
21.
go back to reference F. Rubio-Marcosa, P. Marcheta, X. Vendrellb, J.J. Romeroc, F. Rémondièrea, L. Mestresb, J.F. Fernández, Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. J. Alloy. Compd. 509, 8804 (2011)CrossRef F. Rubio-Marcosa, P. Marcheta, X. Vendrellb, J.J. Romeroc, F. Rémondièrea, L. Mestresb, J.F. Fernández, Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. J. Alloy. Compd. 509, 8804 (2011)CrossRef
22.
go back to reference M.R. Bafandeha, M.H. Abbasia, A. Saidia, J.-S. Lee, Effects of SrTiO3 on dielectric and piezoelectric properties of K0.48Na0.48Li0.04Nb0.96Ta0.04O3-based piezoceramics. Mater. Sci. Eng. B 178, 277 (2013)CrossRef M.R. Bafandeha, M.H. Abbasia, A. Saidia, J.-S. Lee, Effects of SrTiO3 on dielectric and piezoelectric properties of K0.48Na0.48Li0.04Nb0.96Ta0.04O3-based piezoceramics. Mater. Sci. Eng. B 178, 277 (2013)CrossRef
23.
go back to reference Y.Q. Huang, H.W. Du, W. Feng, H.N. Qin, Q.B. Hu, Influence of SrZrO3 addition on structural and electrical properties of (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O3 lead-free piezoelectric ceramics. J. Alloy. Compd. 590, 435 (2014)CrossRef Y.Q. Huang, H.W. Du, W. Feng, H.N. Qin, Q.B. Hu, Influence of SrZrO3 addition on structural and electrical properties of (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O3 lead-free piezoelectric ceramics. J. Alloy. Compd. 590, 435 (2014)CrossRef
24.
go back to reference L.A. Ramajo, F. Rubio-Marcos, A. Del Campo, J.F. Fernández, M.S. Castro, R. Parra, New insights into the properties of KxNa(1–x)NbO3 ceramics obtained by hydrothermal synthesis. Ceram. Int. 40, 14701 (2014)CrossRef L.A. Ramajo, F. Rubio-Marcos, A. Del Campo, J.F. Fernández, M.S. Castro, R. Parra, New insights into the properties of KxNa(1–x)NbO3 ceramics obtained by hydrothermal synthesis. Ceram. Int. 40, 14701 (2014)CrossRef
25.
go back to reference J.G. Wu, J.Q. Xiao, T. Zheng, X.P. Wang, X.J. Cheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, Giant piezoelectricity of (K,Na)(Nb,Sb)O3–(Bi,Na,K,Pb)ZrO3 ceramics with rhombohedral–tetragonal (R–T) phase boundary. Scripta Mater. 88, 41 (2014)CrossRef J.G. Wu, J.Q. Xiao, T. Zheng, X.P. Wang, X.J. Cheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, Giant piezoelectricity of (K,Na)(Nb,Sb)O3–(Bi,Na,K,Pb)ZrO3 ceramics with rhombohedral–tetragonal (R–T) phase boundary. Scripta Mater. 88, 41 (2014)CrossRef
26.
go back to reference K. Zhang, Y.P. Guo, D. Pan, H.N. Duan, Y.J. Chen, H. Li, H.Z. Liu, Phase transition and piezoelectric properties of dense (K0.48,Na0.52)0.95Li0.05SbxNb(1–x)O3–0.03Ca0.5(Bi0.5,Na0.5)0.5ZrO3 lead free ceramics. J. Alloy. Compd. 664, 503 (2016)CrossRef K. Zhang, Y.P. Guo, D. Pan, H.N. Duan, Y.J. Chen, H. Li, H.Z. Liu, Phase transition and piezoelectric properties of dense (K0.48,Na0.52)0.95Li0.05SbxNb(1–x)O3–0.03Ca0.5(Bi0.5,Na0.5)0.5ZrO3 lead free ceramics. J. Alloy. Compd. 664, 503 (2016)CrossRef
27.
go back to reference X.B. Yan, B.L. Peng, X.F. Lu, Q.Z. Dong, W.S. Li, Structure evolution and enhanced piezoelectric properties of (K0.5Na0.5)NbO3–0.06LiTaO3–SrZrO3 lead-free ceramics. J. Alloy. Compd. 653, 523 (2015)CrossRef X.B. Yan, B.L. Peng, X.F. Lu, Q.Z. Dong, W.S. Li, Structure evolution and enhanced piezoelectric properties of (K0.5Na0.5)NbO3–0.06LiTaO3–SrZrO3 lead-free ceramics. J. Alloy. Compd. 653, 523 (2015)CrossRef
28.
go back to reference X.J. Cheng, J.G. Wu, T. Zheng, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J. Alloy. Compd. 610, 86 (2014)CrossRef X.J. Cheng, J.G. Wu, T. Zheng, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J. Alloy. Compd. 610, 86 (2014)CrossRef
29.
go back to reference Z. Tan, J. Xing, L.M. Jiang, L.G. Sun, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, Microstructure, electrical properties and temperature stability in Bi0.5Na0.5Zr0.95Ce0.05O3modified R–T phase boundary of potassium-sodium niobium lead-free ceramics. RSC Adv. 6, 6983 (2016)CrossRef Z. Tan, J. Xing, L.M. Jiang, L.G. Sun, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, Microstructure, electrical properties and temperature stability in Bi0.5Na0.5Zr0.95Ce0.05O3modified R–T phase boundary of potassium-sodium niobium lead-free ceramics. RSC Adv. 6, 6983 (2016)CrossRef
Metadata
Title
The piezoelectric and dielectric properties of sodium–potassium niobate ceramics with new multiphase boundary
Authors
Fenglian Li
Qian Gou
Jie Xing
Zhi Tan
Laiming Jiang
Lixu Xie
Jiagang Wu
Wen Zhang
Dingquan Xiao
Jianguo Zhu
Publication date
08-09-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7753-1

Other articles of this Issue 23/2017

Journal of Materials Science: Materials in Electronics 23/2017 Go to the issue