Abstract
Nanocomposites allow for controlling the magnitude and dispersion of the effective refractive index within broad regions. Exploiting this tunability offers a high potential for improving the performance or reducing the size of optical systems. This is because the different monochromatic and chromatic aberrations in optical systems depend critically on the materials’ properties. In the previous chapter, I have shown that a key part of this potential is that nanocomposites allow for the design of highly efficient DOEs. However, the full potential of dispersion-engineered nanocomposites goes beyond this application. In fact, I have already demonstrated that the high refractive index of nanocomposites is highly useful for reducing spherical aberration. In this chapter, I now focus on using nanocomposites, or novel dispersion-engineered materials in general, for correcting chromatic aberrations, that is, the design of achromatic optical systems. My goal for this chapter is to advanced concepts on how such materials can be used. I emphasize that evaluating the full potential of dispersion-engineered materials is only possible through systematic optical design studies for different systems. As one promising application for novel dispersion-engineered materials, I investigate the potential of such materials for enabling a new generation of smartphone cameras in the final section of this chapter.