Skip to main content
Top

2022 | OriginalPaper | Chapter

The Preliminary Realization and Evaluation of CTRF2020 Based on New BDS3 Technology

Authors : Yingying Ren, Hu Wang, Yangfei Hou, Jiexian Wang, Yingyan Cheng, Pengyuan Li

Published in: China Satellite Navigation Conference (CSNC 2022) Proceedings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current research of the international and regional coordinate reference framework is mainly realized by GPS technology. The launch of the last BDS3 satellite on June 23 of 2020 marked the completion of the global deployment of BDS. Therefore, it is urgent to study and establish the corresponding coordinate reference framework. We aim to preliminarily realize and evaluate the BDS3/COMPASS terrestrial reference framework (CTRF2020). CTRF2020 reference epoch is 2020.0, and it can be expressed with the coordinates and velocities of a series of reference sites at the epoch of 2020.0. Firstly, the evaluation of the actual service performance of BDS in the global region reflects the high visibility and change trend of BDS satellite in recent three years, which provides basic input data for CTRF2020. Then, the BDS observations of about 100 global stations in the recent three years are calculated by PPP and NET solution, to obtain the global high-precision BDS coordinate time series. Then, the BDS time series of the two solutions are fitted and compared with the IGS14 velocity field. The results show that the series accuracy of PPP-BDS and NET-BDS solutions is equivalent, and there is an mm-level systematic deviation with IGS14 solutions. The horizontal series fitting accuracy of PPP-BDS and NET-BDS solutions is better than that of the vertical direction, the accuracy of NET-BDS solution is slightly better than PPP-BDS, and the difference of fitting accuracy is 0.12, 0.13, and 0.50 mm in the NEU direction. The velocity field accuracy of PPP-BDS and NET-BDS solution is the same, and the overall three-dimensional velocity difference is less than 0.2 mm/a. The velocity fields of PPP-BDS and NET-BDS solution have little difference from IGS14, and the overall difference is less than 0.5 mm/a. Finally, we give the limitations and improvement direction of CTRF2020. The preliminary realization and evaluation of CTRF2020 may be expected to provide a reference for the future realization of a comprehensive terrestrial reference framework dominated by BDS3 technology and supplemented by multi-source space geodetic technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Altamimi, Z., Boucher, C., Sillard, P.: New trends for the realization of the International Terrestrial Reference System. Adv. Space Res. 30(2), 175–184 (2002)CrossRef Altamimi, Z., Boucher, C., Sillard, P.: New trends for the realization of the International Terrestrial Reference System. Adv. Space Res. 30(2), 175–184 (2002)CrossRef
2.
go back to reference Altamimi, Z., Collilieux, X., Legrand, J., et al.: ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. Solid Earth 112(B9) (2007) Altamimi, Z., Collilieux, X., Legrand, J., et al.: ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. Solid Earth 112(B9) (2007)
3.
go back to reference Altamimi, Z., Collilieux, X., Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geodesy 85(8), 457–473 (2011)CrossRef Altamimi, Z., Collilieux, X., Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geodesy 85(8), 457–473 (2011)CrossRef
4.
go back to reference Altamimi, Z., Rebischung, P., Métivier, L., et al.: ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121(8), 6109–6131 (2016)CrossRef Altamimi, Z., Rebischung, P., Métivier, L., et al.: ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121(8), 6109–6131 (2016)CrossRef
5.
go back to reference Hammond, W.C., Blewitt, G., Kreemer, C., et al.: GPS imaging of global vertical land motion for studies of sea level rise. J. Geophys. Res. Solid Earth 126(7), e2021JB022355 (2021) Hammond, W.C., Blewitt, G., Kreemer, C., et al.: GPS imaging of global vertical land motion for studies of sea level rise. J. Geophys. Res. Solid Earth 126(7), e2021JB022355 (2021)
6.
go back to reference Árnadóttir, T., Lund, B., Jiang, W., et al.: Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland. Geophys. J. Int. 177(2), 691–716 (2009)CrossRef Árnadóttir, T., Lund, B., Jiang, W., et al.: Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland. Geophys. J. Int. 177(2), 691–716 (2009)CrossRef
7.
go back to reference Dong, D., Fang, P., Bock, Y., et al.: Anatomy of apparent seasonal variations from GPS‐derived site position time series. J. Geophys. Res. Solid Earth 107(B4), ETG 9-1–ETG 9-16 (2002) Dong, D., Fang, P., Bock, Y., et al.: Anatomy of apparent seasonal variations from GPS‐derived site position time series. J. Geophys. Res. Solid Earth 107(B4), ETG 9-1–ETG 9-16 (2002)
8.
go back to reference Ren, Y., Wang, H., Lian, L., et al.: A method based on MTLS and ILSP for GNSS coordinate time series analysis with missing data. Adv. Space Res. 68(9), 3546–3561 (2021)CrossRef Ren, Y., Wang, H., Lian, L., et al.: A method based on MTLS and ILSP for GNSS coordinate time series analysis with missing data. Adv. Space Res. 68(9), 3546–3561 (2021)CrossRef
9.
go back to reference Lu, J., Guo, X., Su, C.: Global capabilities of BeiDou Navigation Satellite System. Satell. Navig. 1(1), 27 (2020)CrossRef Lu, J., Guo, X., Su, C.: Global capabilities of BeiDou Navigation Satellite System. Satell. Navig. 1(1), 27 (2020)CrossRef
10.
go back to reference Wang, M., Wang, J., Dong, D., et al.: Performance of BDS-3: satellite visibility and dilution of precision. GPS Solut. 23(2), 1–14 (2019) Wang, M., Wang, J., Dong, D., et al.: Performance of BDS-3: satellite visibility and dilution of precision. GPS Solut. 23(2), 1–14 (2019)
11.
go back to reference Geng, J., Chen, X., Pan, Y., et al.: PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solut. 23(4), 1–10 (2019)CrossRef Geng, J., Chen, X., Pan, Y., et al.: PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solut. 23(4), 1–10 (2019)CrossRef
12.
go back to reference Zhang, J.: Continuous GPS Measurements of Crustal Deformation in Southern California. University of California, San Diego (1996) Zhang, J.: Continuous GPS Measurements of Crustal Deformation in Southern California. University of California, San Diego (1996)
13.
go back to reference Nikolaidis, R.: Observation of Geodetic and Seismic Deformation with the Global Positioning System. University of California, San Diego (2002) Nikolaidis, R.: Observation of Geodetic and Seismic Deformation with the Global Positioning System. University of California, San Diego (2002)
14.
go back to reference Shen, Z.K., Jackson, D.D., Feng, Y., et al.: Postseismic deformation following the Landers earthquake, California, June 28 1992. Bull. Seismol. Soc. Am. 84(3), 780–791 (1994)CrossRef Shen, Z.K., Jackson, D.D., Feng, Y., et al.: Postseismic deformation following the Landers earthquake, California, June 28 1992. Bull. Seismol. Soc. Am. 84(3), 780–791 (1994)CrossRef
15.
go back to reference Marone, C.J., Scholtz, C.H., Bilham, R.: On the mechanics of earthquake afterslip. J. Geophys. Res. Solid Earth 96(B5), 8441–8452 (1991)CrossRef Marone, C.J., Scholtz, C.H., Bilham, R.: On the mechanics of earthquake afterslip. J. Geophys. Res. Solid Earth 96(B5), 8441–8452 (1991)CrossRef
Metadata
Title
The Preliminary Realization and Evaluation of CTRF2020 Based on New BDS3 Technology
Authors
Yingying Ren
Hu Wang
Yangfei Hou
Jiexian Wang
Yingyan Cheng
Pengyuan Li
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2588-7_6