Skip to main content
Top
Published in: Cellulose 9/2021

23-04-2021 | Original Research

The preparation and characterization of chemically deuterium incorporated cotton fibers

Authors: Yan Song, Wei Jiang, Haoxi Ben, Yuanming Zhang, Guangting Han, Arthur J. Ragauskas

Published in: Cellulose | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Preparation of deuterium incorporated cellulose is a vital tool to investigate cellulose internal structure and to expand the application fields of cellulose materials. In this study, cellulosic cotton fibers with anti-rehydration (exchange-resistant) deuterium incorporated in cellulose were prepared by chemical hydrogen–deuterium exchange treatment. The chemical hydrogen–deuterium exchange process, along with exchange time, were characterized by nuclear magnetic resonance hydrogen spectroscopy (1H-NMR). The anti-rehydration deuterium incorporation was determined by Fourier Transform infrared spectroscopy (FTIR) and Stable Isotope Ratio Mass Spectrometer (IRSM). The effect of the deuterium hydroxyl substitution on cotton fiber’s spectral data, microstructure, crystalline information, degree of polymerization, as well as it’s thermogravimetric analysis (charcoalization and combustion) are explored. Analysis of the chemical exchange process indicated that the hydrogen–deuterium exchange occurred preferentially in the amorphous cellulose component over the first several minutes. Deuterium exchange in the anti-rehydration crystalline phase took several hours. Increasing the treatment time, enhanced exchange-resistant deuterium incorporation to as high as about 60% of the cotton fibers’ cellulose hydroxyl groups was achieved. The characterization of FTIR, Fourier transform Raman (FT-Raman), and near-infrared spectra (NIR) all exhibited the deuterium spectral isotope effect on cellulose hydroxl groups. While, apart from the effect of reaction temperature, deuterium incorporation isotope effect did not affect the cellulose microstructure, crystalline index and the degree of polymerization properties. Furthermore, the thermogravimetric analysis of deuterated cotton fibers under N2 and air atmosphere were both altered due to the thermodynamic isotope effect. These observations revealed the hydrogen–deuterium exchange treatment process and impacts on cellulose fiber properties, which helped us to better understand the cellulose internal structure and may facilitate the potential utilization of deuterated cellulosic materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bali G, Foston MB, O’Neill HM, Evans BR, He J, Ragauskas AJ (2013) The effect of deuteration on the structure of bacterial cellulose. Carbohydr Res 374:82–88CrossRef Bali G, Foston MB, O’Neill HM, Evans BR, He J, Ragauskas AJ (2013) The effect of deuteration on the structure of bacterial cellulose. Carbohydr Res 374:82–88CrossRef
go back to reference Bhagia S, Meng XZ, Evans BR, Dunlap JR, Bali G, Chen JH et al (2018) Ultrastructure and enzymatic hydrolysis of deuterated switchgrass. Sci Rep 8(1):13226–13234CrossRef Bhagia S, Meng XZ, Evans BR, Dunlap JR, Bali G, Chen JH et al (2018) Ultrastructure and enzymatic hydrolysis of deuterated switchgrass. Sci Rep 8(1):13226–13234CrossRef
go back to reference Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Macquarrie DJ (2010) Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour Technol 101(10):3776–3779CrossRef Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Macquarrie DJ (2010) Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour Technol 101(10):3776–3779CrossRef
go back to reference Evans BR, Shah R (2015) Development of approaches for deuterium incorporation in plants. Methods Enzymol 565:213–243CrossRef Evans BR, Shah R (2015) Development of approaches for deuterium incorporation in plants. Methods Enzymol 565:213–243CrossRef
go back to reference Evans BR, Bali G, Reeves DT, O’Neill HM, Ragauskas AJ (2014) Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum). J Agric Food Chem 62(12):2595–2604CrossRef Evans BR, Bali G, Reeves DT, O’Neill HM, Ragauskas AJ (2014) Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum). J Agric Food Chem 62(12):2595–2604CrossRef
go back to reference Evans BR, Bali G, Foston M, Ragauskas AJ, O’Neill HM, Shah R et al (2015) Production of deuterated switchgrass by hydroponic cultivation. Planta 242(1):215–222CrossRef Evans BR, Bali G, Foston M, Ragauskas AJ, O’Neill HM, Shah R et al (2015) Production of deuterated switchgrass by hydroponic cultivation. Planta 242(1):215–222CrossRef
go back to reference Evans BR, Foston M, O’Neill HM, Reeves D, Rempe C, Mcgrath K et al (2019) Production of deuterated biomass by cultivation of lemna minor (duckweed) in D2O. Planta 249:1465–1475CrossRef Evans BR, Foston M, O’Neill HM, Reeves D, Rempe C, Mcgrath K et al (2019) Production of deuterated biomass by cultivation of lemna minor (duckweed) in D2O. Planta 249:1465–1475CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
go back to reference Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Am Chem Soc 70(3):1107–1113CrossRef Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Am Chem Soc 70(3):1107–1113CrossRef
go back to reference Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13(2):131–145CrossRef Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13(2):131–145CrossRef
go back to reference Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11(9):2300–2305CrossRef Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11(9):2300–2305CrossRef
go back to reference Jiang W, Song Y, Liu S, Ben H, Zhang Y, Zhou C et al (2018) A green degumming process of ramie. Ind Crops Prod 120:131–134CrossRef Jiang W, Song Y, Liu S, Ben H, Zhang Y, Zhou C et al (2018) A green degumming process of ramie. Ind Crops Prod 120:131–134CrossRef
go back to reference Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946CrossRef Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946CrossRef
go back to reference Lindh EL, Salmén L (2016) Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24(1):21–33CrossRef Lindh EL, Salmén L (2016) Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24(1):21–33CrossRef
go back to reference Łojewska J, Missori M, Lubańska A, Grimaldi P, Ziȩba K, Proniewicz LM et al (2007) Carbonyl groups development on degraded cellulose. Correlation between spectroscopic and chemical results. Appl Phys A 89(4):883–887CrossRef Łojewska J, Missori M, Lubańska A, Grimaldi P, Ziȩba K, Proniewicz LM et al (2007) Carbonyl groups development on degraded cellulose. Correlation between spectroscopic and chemical results. Appl Phys A 89(4):883–887CrossRef
go back to reference Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ (2016) Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 4:4563–4572CrossRef Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ (2016) Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 4:4563–4572CrossRef
go back to reference Nishiyama Y, Isogai A, Okano T, Müller M, Chanzy H (1999) Intracrystalline deuteration of native cellulose. Macromolecules 32(6):2078–2081CrossRef Nishiyama Y, Isogai A, Okano T, Müller M, Chanzy H (1999) Intracrystalline deuteration of native cellulose. Macromolecules 32(6):2078–2081CrossRef
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
go back to reference Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef
go back to reference Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Crystallogr Sect D Biol Crystallogr 66(11):1172–1177CrossRef Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Crystallogr Sect D Biol Crystallogr 66(11):1172–1177CrossRef
go back to reference O’Neill H, Shah R, Evans BR, He J, Urban V (2015) Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies. Methods Enzymol 565:123–146CrossRef O’Neill H, Shah R, Evans BR, He J, Urban V (2015) Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies. Methods Enzymol 565:123–146CrossRef
go back to reference Reishofer D, Spirk S (2015) Deuterium and cellulose: a comprehensive review. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 93–114CrossRef Reishofer D, Spirk S (2015) Deuterium and cellulose: a comprehensive review. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 93–114CrossRef
go back to reference Segal et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
go back to reference Song Y, Jiang W, Ben H, Meng X, Ragauskas AJ (2020) The production of hydrogen–deuterium exchanged cellulose fibers with exchange-resistant deuterium incorporation. Cellulose 4(27):6163–6174CrossRef Song Y, Jiang W, Ben H, Meng X, Ragauskas AJ (2020) The production of hydrogen–deuterium exchanged cellulose fibers with exchange-resistant deuterium incorporation. Cellulose 4(27):6163–6174CrossRef
go back to reference Tsuchikawa S, Siesler HW (2003) Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: softwood. Appl Spectrosc 57(6):675–681CrossRef Tsuchikawa S, Siesler HW (2003) Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: softwood. Appl Spectrosc 57(6):675–681CrossRef
go back to reference Whiteside PT, Luk SY, Madden-Smith CE, Turner P, Patel N, George MW (2008) Detection of low levels of amorphous lactose using H/D exchange and FT-Raman spectroscopy. Pharmacol Res 25(11):2650–2656CrossRef Whiteside PT, Luk SY, Madden-Smith CE, Turner P, Patel N, George MW (2008) Detection of low levels of amorphous lactose using H/D exchange and FT-Raman spectroscopy. Pharmacol Res 25(11):2650–2656CrossRef
Metadata
Title
The preparation and characterization of chemically deuterium incorporated cotton fibers
Authors
Yan Song
Wei Jiang
Haoxi Ben
Yuanming Zhang
Guangting Han
Arthur J. Ragauskas
Publication date
23-04-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 9/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03869-9

Other articles of this Issue 9/2021

Cellulose 9/2021 Go to the issue