Skip to main content
Top
Published in: Cellulose 4/2014

01-08-2014 | Original Paper

The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions

Author: Bojan Janković

Published in: Cellulose | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work deals with the isothermal pyrolysis of Pine and Beech wood samples and kinetic studies, using the thermo-analytical technique, at five different operating temperatures. Pyrolysis processes were investigated by using the distributed apparent activation energy model, which involves the complex mixture of different continuous distribution functions. It was found that decomposition processes of wood pseudo-components take place in different conversion areas during entire pyrolyses, whereby these areas, as well as the changes in apparent activation energy (E a) values, are not the same for softwood and hardwood samples. Bulk density (Bden) and energy density (ED) considerations have shown that both biomass samples suffer from low Bden and ED values. It was concluded that pyrolysis can be used as a means of decreasing transportation costs of wood biomass materials, thus increasing energy density. The “pseudo” kinetic compensation effect was identified, which arises from kinetic model variation and wood species variation. In the current extensive study, it was concluded that primary pyrolysis refers to decomposition reactions of any of three major constituents of the considered wood samples. Also, it was established that primary reactions may proceed in parallel with simultaneous decomposition of lignin, hemicelluloses and cellulose in the different regions of wood samples, depending on the operating temperature. It was established that endothermic effects dominate, which are characterized with devolatilization and formation of volatile products. It has been suggested that the endothermic behavior that arises from pyrolyses of considered samples may indicate the endothermic depolymerization sequence of cellulose structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrawal RK (1986) On the compensation effect. J Therm Anal Calorim 31:73–86CrossRef Agrawal RK (1986) On the compensation effect. J Therm Anal Calorim 31:73–86CrossRef
go back to reference Agrawal RK (1988) Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Can J Chem Eng 66:403–417CrossRef Agrawal RK (1988) Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Can J Chem Eng 66:403–417CrossRef
go back to reference Agrawal RK (1989) The compensation effect: a fact or a fiction. J Therm Anal Calorim 35:909–917CrossRef Agrawal RK (1989) The compensation effect: a fact or a fiction. J Therm Anal Calorim 35:909–917CrossRef
go back to reference Aho A, Kumar N, Eränen K, Holmbom B, Hupa M, Salmi T, Murzin DY (2008) Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Int J Mol Sci 9:1665–1675CrossRef Aho A, Kumar N, Eränen K, Holmbom B, Hupa M, Salmi T, Murzin DY (2008) Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Int J Mol Sci 9:1665–1675CrossRef
go back to reference Antal MJ, Várhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717CrossRef Antal MJ, Várhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717CrossRef
go back to reference Antal MJ, Várhegyi G (1997) Impact of systematic errors on the determination of cellulose pyrolysis kinetic. Energy Fuels 11:1309–1310CrossRef Antal MJ, Várhegyi G (1997) Impact of systematic errors on the determination of cellulose pyrolysis kinetic. Energy Fuels 11:1309–1310CrossRef
go back to reference Baitalow F, Schmidt H-G, Wolf G (1999) Formal kinetic analysis of processes in the solid state. Thermochim Acta 337:111–120CrossRef Baitalow F, Schmidt H-G, Wolf G (1999) Formal kinetic analysis of processes in the solid state. Thermochim Acta 337:111–120CrossRef
go back to reference Barneto AG, Carmona JA, Alfonso JEM, Blanco JD (2009) Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis 86:108–114CrossRef Barneto AG, Carmona JA, Alfonso JEM, Blanco JD (2009) Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis 86:108–114CrossRef
go back to reference Beall FC (1969) Thermogravimetric analysis of wood lignin and hemicelluloses. Wood Fiber Sci 1(3):215–226 Beall FC (1969) Thermogravimetric analysis of wood lignin and hemicelluloses. Wood Fiber Sci 1(3):215–226
go back to reference Belderok HJM (2007) Experimental investigation and modeling of the pyrolysis of biomass. PhD thesis, lecture no. WVT 2007.33, Eindhoven University of Technology, Dec 2007, Eindhoven, The Netherlands, pp 1–125 Belderok HJM (2007) Experimental investigation and modeling of the pyrolysis of biomass. PhD thesis, lecture no. WVT 2007.33, Eindhoven University of Technology, Dec 2007, Eindhoven, The Netherlands, pp 1–125
go back to reference Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRef Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRef
go back to reference Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141CrossRef Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141CrossRef
go back to reference Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1:153–161CrossRef Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1:153–161CrossRef
go back to reference Broido A, Weinstein M (1970) Thermogravimetric analysis of ammonia-swelled cellulose. Combust Sci Technol 1(4):279–285CrossRef Broido A, Weinstein M (1970) Thermogravimetric analysis of ammonia-swelled cellulose. Combust Sci Technol 1(4):279–285CrossRef
go back to reference Brown ME, Galwey AK (1989) Arrhenius parameters for solid-state reactions from isothermal rate–time curves. Anal Chem 61:1136–1139CrossRef Brown ME, Galwey AK (1989) Arrhenius parameters for solid-state reactions from isothermal rate–time curves. Anal Chem 61:1136–1139CrossRef
go back to reference Bryden KM, Ragland KW, Rutland CJ (2002) Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 22:41–53CrossRef Bryden KM, Ragland KW, Rutland CJ (2002) Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 22:41–53CrossRef
go back to reference Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuels 13:1–22CrossRef Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuels 13:1–22CrossRef
go back to reference Cai J, Liu R (2008) New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol 99(8):2795–2799CrossRef Cai J, Liu R (2008) New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol 99(8):2795–2799CrossRef
go back to reference Cai J, Wu W, Liu R, Huber GW (2013) A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem 15:1331–1340CrossRef Cai J, Wu W, Liu R, Huber GW (2013) A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem 15:1331–1340CrossRef
go back to reference Chew MYL, An Hoang NQ, Shi L (2011) Pyrolysis of tropical hardwood under long-term and low-temperature conditions. Int J Archit Sci 8(1):17–27 Chew MYL, An Hoang NQ, Shi L (2011) Pyrolysis of tropical hardwood under long-term and low-temperature conditions. Int J Archit Sci 8(1):17–27
go back to reference Chinnappan B, Shikha B, Ranjit SD (eds) (2012) Biomass conversion: the interface of biotechnology, chemistry and materials science, chap 11. Springer, Berlin, pp 342–350 Chinnappan B, Shikha B, Ranjit SD (eds) (2012) Biomass conversion: the interface of biotechnology, chemistry and materials science, chap 11. Springer, Berlin, pp 342–350
go back to reference Cho J, Davis JM, Huber GW (2010) The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem 3:1162–1165CrossRef Cho J, Davis JM, Huber GW (2010) The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem 3:1162–1165CrossRef
go back to reference Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H (2008) Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int 57(5):722–729CrossRef Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H (2008) Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int 57(5):722–729CrossRef
go back to reference de Wild PJ, Reith H, Heeres HJ (2011) Biomass pyrolysis for chemicals. Biofuels 2:185–208CrossRef de Wild PJ, Reith H, Heeres HJ (2011) Biomass pyrolysis for chemicals. Biofuels 2:185–208CrossRef
go back to reference Dee S, Bell AT (2011) Effects of reaction conditions on the acid-catalyzed hydrolysis of miscanthus dissolved in an ionic liquid. Green Chem 13:1467–1475CrossRef Dee S, Bell AT (2011) Effects of reaction conditions on the acid-catalyzed hydrolysis of miscanthus dissolved in an ionic liquid. Green Chem 13:1467–1475CrossRef
go back to reference Demirbas A (2005) Pyrolysis of ground beech wood in irregular heating rate conditions. J Anal Appl Pyrol 73:39–43CrossRef Demirbas A (2005) Pyrolysis of ground beech wood in irregular heating rate conditions. J Anal Appl Pyrol 73:39–43CrossRef
go back to reference Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90CrossRef Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90CrossRef
go back to reference Di Blasi C, Branca C (2001) Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res 40:5547–5556CrossRef Di Blasi C, Branca C (2001) Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res 40:5547–5556CrossRef
go back to reference Dong C-Q, Zhang Z-F, Lu Q, Yang Y-P (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conv Manag 57:49–59CrossRef Dong C-Q, Zhang Z-F, Lu Q, Yang Y-P (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conv Manag 57:49–59CrossRef
go back to reference Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1(1):26–56CrossRef Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1(1):26–56CrossRef
go back to reference Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137CrossRef Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137CrossRef
go back to reference Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115CrossRef Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115CrossRef
go back to reference Galwey AK (1977) Compensation effect in heterogenous catalysis. Adv Catal 26:247–322CrossRef Galwey AK (1977) Compensation effect in heterogenous catalysis. Adv Catal 26:247–322CrossRef
go back to reference Gašparovič L, Koreňová Z, Jelemenský Ľ (2010) Kinetic study of wood chips decomposition by TGA. Chem Pap 64(2):174–181CrossRef Gašparovič L, Koreňová Z, Jelemenský Ľ (2010) Kinetic study of wood chips decomposition by TGA. Chem Pap 64(2):174–181CrossRef
go back to reference Gašparovič L, Labovský J, Markoš J, Jelemenský Ľ (2012) Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q 26(1):45–53 Gašparovič L, Labovský J, Markoš J, Jelemenský Ľ (2012) Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q 26(1):45–53
go back to reference Giuntoli J, de Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM (2007) Proceedings of 16th European biomass conference and exposition, May 7–11, Berlin, Germany, pp 1–6 Giuntoli J, de Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM (2007) Proceedings of 16th European biomass conference and exposition, May 7–11, Berlin, Germany, pp 1–6
go back to reference Glasser WG (1985) Lignin. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 61–76CrossRef Glasser WG (1985) Lignin. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 61–76CrossRef
go back to reference Gopalakrishnan S, Sujatha R (2011) Comparative thermoanalytical studies of polyurethanes using Coats-Redfern, Broido and Horowitz-Metzger methods. Der Chem Sin 2(5):103–117 Gopalakrishnan S, Sujatha R (2011) Comparative thermoanalytical studies of polyurethanes using Coats-Redfern, Broido and Horowitz-Metzger methods. Der Chem Sin 2(5):103–117
go back to reference Güneş M, Güneş S (2002) A direct search method for determination of DAEM kinetic parameters from non-isothermal TGA data. Appl Math Comput 130:619–628CrossRef Güneş M, Güneş S (2002) A direct search method for determination of DAEM kinetic parameters from non-isothermal TGA data. Appl Math Comput 130:619–628CrossRef
go back to reference Gupta R, Mittal ND (2010) Pyrolysis modelling in a wood stove. Int J Eng Sci Technol 2(10):5088–5098 Gupta R, Mittal ND (2010) Pyrolysis modelling in a wood stove. Int J Eng Sci Technol 2(10):5088–5098
go back to reference Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001CrossRef Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001CrossRef
go back to reference Janković B (2011) The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol 102:9763–9771CrossRef Janković B (2011) The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol 102:9763–9771CrossRef
go back to reference Janković B (2013) Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym 95(2):621–629CrossRef Janković B (2013) Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym 95(2):621–629CrossRef
go back to reference Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66CrossRef Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66CrossRef
go back to reference Jin W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3:12–32CrossRef Jin W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3:12–32CrossRef
go back to reference Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328CrossRef Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328CrossRef
go back to reference Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67:75–84CrossRef Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67:75–84CrossRef
go back to reference Ledakowicz S, Stolarek P (2002) Kinetics of biomass thermal decomposition. Chem Pap 56(6):378–381 Ledakowicz S, Stolarek P (2002) Kinetics of biomass thermal decomposition. Chem Pap 56(6):378–381
go back to reference Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrol 94:17–32CrossRef Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrol 94:17–32CrossRef
go back to reference Lee SS, Yu S, Withers SG (2003) Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucanlyase. Biochemistry 42:13081–13090CrossRef Lee SS, Yu S, Withers SG (2003) Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucanlyase. Biochemistry 42:13081–13090CrossRef
go back to reference Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press, Taylor and Francis, Boca Raton, pp 611–619 Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press, Taylor and Francis, Boca Raton, pp 611–619
go back to reference Lin T, Goos E, Riedel U (2013) A sectional approach for biomass: modelling the pyrolysis of cellulose. Fuel Process Technol 115:246–253CrossRef Lin T, Goos E, Riedel U (2013) A sectional approach for biomass: modelling the pyrolysis of cellulose. Fuel Process Technol 115:246–253CrossRef
go back to reference Lipska AE, Parker WJ (1966) Kinetics of the pyrolysis of cellulose in the temperature range 250–300°C. J Appl Polym Sci 10(10):1439–1453CrossRef Lipska AE, Parker WJ (1966) Kinetics of the pyrolysis of cellulose in the temperature range 250–300°C. J Appl Polym Sci 10(10):1439–1453CrossRef
go back to reference Lipska AE, Wodley FA (1969) Isothermal pyrolysis of cellulose: kinetics and gas chromatographic mass spectrometric analysis of the degradation products. J Appl Polym Sci 13(5):851–865CrossRef Lipska AE, Wodley FA (1969) Isothermal pyrolysis of cellulose: kinetics and gas chromatographic mass spectrometric analysis of the degradation products. J Appl Polym Sci 13(5):851–865CrossRef
go back to reference Luo Z, Wang S, Cen K (2005) A model of wood flash pyrolysis in fluidized bed reactor. Renew Energy 30:377–392CrossRef Luo Z, Wang S, Cen K (2005) A model of wood flash pyrolysis in fluidized bed reactor. Renew Energy 30:377–392CrossRef
go back to reference Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42:434–441CrossRef Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42:434–441CrossRef
go back to reference Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137 Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137
go back to reference Milosavljevic I, Suuberg EM (1995) Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 34:1081–1091CrossRef Milosavljevic I, Suuberg EM (1995) Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 34:1081–1091CrossRef
go back to reference Miura K (1995) A new and simple method to estimate f(E) and k 0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels 9:302–307CrossRef Miura K (1995) A new and simple method to estimate f(E) and k 0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels 9:302–307CrossRef
go back to reference Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68–69:231–249CrossRef Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68–69:231–249CrossRef
go back to reference Nakano J, Higuchi T, Sumimoto T, Ishizu A (1983) Mokuzai kagakuk. Uni Publishing, Tokyo, pp 145–227 (in Japanese) Nakano J, Higuchi T, Sumimoto T, Ishizu A (1983) Mokuzai kagakuk. Uni Publishing, Tokyo, pp 145–227 (in Japanese)
go back to reference Novak JM, Cantrell KB, Watts DW (2013) Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis—high and low temperature pyrolyzed biochars. Bioenerg Res 6:114–130CrossRef Novak JM, Cantrell KB, Watts DW (2013) Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis—high and low temperature pyrolyzed biochars. Bioenerg Res 6:114–130CrossRef
go back to reference Ortega A (2008) A simple and precise linear integral method for isoconversional data. Thermochim Acta 474:81–86CrossRef Ortega A (2008) A simple and precise linear integral method for isoconversional data. Thermochim Acta 474:81–86CrossRef
go back to reference Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2(3):301–324CrossRef Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2(3):301–324CrossRef
go back to reference Ozawa T (1986) Non-isothermal kinetics and generalized time. Thermochim Acta 100(1):109–118CrossRef Ozawa T (1986) Non-isothermal kinetics and generalized time. Thermochim Acta 100(1):109–118CrossRef
go back to reference Paik P, Kar KK (2009) Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113:953–961CrossRef Paik P, Kar KK (2009) Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113:953–961CrossRef
go back to reference Parthasarathy P, Sheeba Narayanan K, Arockiam L (2013) Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass Bioenergy 58:58–66CrossRef Parthasarathy P, Sheeba Narayanan K, Arockiam L (2013) Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass Bioenergy 58:58–66CrossRef
go back to reference Pau DSW, Fleischmann CM, Spearpoint MJ, Li KY (2013) Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci 31(4):356–384CrossRef Pau DSW, Fleischmann CM, Spearpoint MJ, Li KY (2013) Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci 31(4):356–384CrossRef
go back to reference Pierre F, Almeida G, Brito JO, Perré P (2011) Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. Bioresources 6(2):1204–1218 Pierre F, Almeida G, Brito JO, Perré P (2011) Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. Bioresources 6(2):1204–1218
go back to reference Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V (2003) Heat of wood pyrolysis. Fuel 82:81–91CrossRef Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V (2003) Heat of wood pyrolysis. Fuel 82:81–91CrossRef
go back to reference Roberts AF (1970) A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame 14(2):261–272CrossRef Roberts AF (1970) A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame 14(2):261–272CrossRef
go back to reference Saka S (2000) Chemical composition and distribution. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 51–81 Saka S (2000) Chemical composition and distribution. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 51–81
go back to reference Santos RB, Capanema EA, Balakshin MY, Chang H-M, Jameel H (2011) Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. Bioresources 6(4):3623–3637 Santos RB, Capanema EA, Balakshin MY, Chang H-M, Jameel H (2011) Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. Bioresources 6(4):3623–3637
go back to reference Schwaiger N, Feiner R, Zahel K, Pieber A, Witek V, Pucher P, Ahn E, Wilhelm P, Chernev B, Schröttner H, Siebenhofer M (2011) Liquid and solid products from liquid-phase pyrolysis of softwood. Bioenerg Res 4:294–302CrossRef Schwaiger N, Feiner R, Zahel K, Pieber A, Witek V, Pucher P, Ahn E, Wilhelm P, Chernev B, Schröttner H, Siebenhofer M (2011) Liquid and solid products from liquid-phase pyrolysis of softwood. Bioenerg Res 4:294–302CrossRef
go back to reference Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series, chap 13, vol 207. American Chemical Society, Washington, pp 489–529CrossRef Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series, chap 13, vol 207. American Chemical Society, Washington, pp 489–529CrossRef
go back to reference Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442CrossRef Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442CrossRef
go back to reference Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydrate Res 29:113–122CrossRef Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydrate Res 29:113–122CrossRef
go back to reference Shen DK, Gu S, Jin B, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102:2047–2052CrossRef Shen DK, Gu S, Jin B, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102:2047–2052CrossRef
go back to reference Siti Alwani M, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources 9(1):218–230 Siti Alwani M, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources 9(1):218–230
go back to reference Sjöström E (1981) Wood polysaccharides: wood chemistry, fundamentals and applications. Academic Press, New York, pp 51–67 Sjöström E (1981) Wood polysaccharides: wood chemistry, fundamentals and applications. Academic Press, New York, pp 51–67
go back to reference Slavov G, Allison G, Bosch M (2013) Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Front Plant Sci 4:217–221CrossRef Slavov G, Allison G, Bosch M (2013) Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Front Plant Sci 4:217–221CrossRef
go back to reference Teng H, Wei YC (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811CrossRef Teng H, Wei YC (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811CrossRef
go back to reference Timell TE (1965) Wood hemicelluloses. Part II. Adv Carbohydr Chem 19:409–483 Timell TE (1965) Wood hemicelluloses. Part II. Adv Carbohydr Chem 19:409–483
go back to reference Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 100(31):12771–12800CrossRef Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 100(31):12771–12800CrossRef
go back to reference Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327:52–54CrossRef Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327:52–54CrossRef
go back to reference Várhegyi G (2007) Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrol 79:278–288CrossRef Várhegyi G (2007) Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrol 79:278–288CrossRef
go back to reference Várhegyi G, Bobály B, Jacab E, Chen H (2011) Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32CrossRef Várhegyi G, Bobály B, Jacab E, Chen H (2011) Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32CrossRef
go back to reference Victoria Navarro M, Martínez JD, Murillo R, García T, López JM, Soledad Callén M, Mastral AM (2012) Application of a particle model to pyrolysis. Comparison of different feedstock: plastic, tyre, coal and biomass. Fuel Process Technol 103:1–8CrossRef Victoria Navarro M, Martínez JD, Murillo R, García T, López JM, Soledad Callén M, Mastral AM (2012) Application of a particle model to pyrolysis. Comparison of different feedstock: plastic, tyre, coal and biomass. Fuel Process Technol 103:1–8CrossRef
go back to reference Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262CrossRef Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262CrossRef
go back to reference Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28(2):95–101CrossRef Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28(2):95–101CrossRef
go back to reference Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18(3):393–402CrossRef Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18(3):393–402CrossRef
go back to reference Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183CrossRef Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183CrossRef
go back to reference Wagenaar BM, Prins W, van Swaaij WPM (1993) Flash pyrolysis kinetics of pine wood. Fuel Process Technol 36:291–298CrossRef Wagenaar BM, Prins W, van Swaaij WPM (1993) Flash pyrolysis kinetics of pine wood. Fuel Process Technol 36:291–298CrossRef
go back to reference Wang G, Li W, Li B, Chen H (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87:552–558CrossRef Wang G, Li W, Li B, Chen H (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87:552–558CrossRef
go back to reference Weng J, Jia L, Sun S, Wang Y, Tang X, Zhou Z, Qi F (2013) On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry. Anal Bioanal Chem 405:7097–7105CrossRef Weng J, Jia L, Sun S, Wang Y, Tang X, Zhou Z, Qi F (2013) On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry. Anal Bioanal Chem 405:7097–7105CrossRef
go back to reference Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique. J Anal Appl Pyrol 78:265–271CrossRef Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique. J Anal Appl Pyrol 78:265–271CrossRef
go back to reference Wright MM, Brown RC (2011) Costs of thermochemical conversion of biomass to power and liquid fuels. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power, chap 10. Wiley, Chichester, pp 307–321CrossRef Wright MM, Brown RC (2011) Costs of thermochemical conversion of biomass to power and liquid fuels. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power, chap 10. Wiley, Chichester, pp 307–321CrossRef
go back to reference Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical report NREL/TP-6A20-46586, Nov 2010, Contract no DE-AC36-08GO28308, National Laboratory of the US Department of Energy, Office of Energy Efficiency & Renewable Energy, Colorado, USA Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical report NREL/TP-6A20-46586, Nov 2010, Contract no DE-AC36-08GO28308, National Laboratory of the US Department of Energy, Office of Energy Efficiency & Renewable Energy, Colorado, USA
go back to reference Yang L, Chen X, Zhou X, Fan W (2003) The pyrolysis and ignition of charring materials under an external heat flux. Combust Flame 133:407–413CrossRef Yang L, Chen X, Zhou X, Fan W (2003) The pyrolysis and ignition of charring materials under an external heat flux. Combust Flame 133:407–413CrossRef
go back to reference Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef
go back to reference Yulin L (2008) Kinetic and mechanistic studies of a biomimetic catalyst for hemicellulosic biomass hydrolysis. PhD thesis, lecture no 3344068, Purdue University, June 2008, West Lafayette, IN, pp 27–40 Yulin L (2008) Kinetic and mechanistic studies of a biomimetic catalyst for hemicellulosic biomass hydrolysis. PhD thesis, lecture no 3344068, Purdue University, June 2008, West Lafayette, IN, pp 27–40
Metadata
Title
The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions
Author
Bojan Janković
Publication date
01-08-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0263-x

Other articles of this Issue 4/2014

Cellulose 4/2014 Go to the issue