Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2021 | OriginalPaper | Chapter

The \(\alpha \mu \) Search Algorithm for the Game of Bridge

Authors: Tristan Cazenave, Véronique Ventos

Published in: Monte Carlo Search

Publisher: Springer International Publishing

share
SHARE

Abstract

\(\alpha \mu \) is an anytime heuristic search algorithm for incomplete information games that assumes perfect information for the opponents. \(\alpha \mu \) addresses and if given enough time solves the strategy fusion and the non-locality problems encountered by Perfect Information Monte Carlo search (PIMC). Strategy fusion is due to PIMC playing different strategies in different worlds when it has to find a unique strategy for all the worlds. Non-locality is due to choosing locally optimal moves that are globally inferior. In this paper \(\alpha \mu \) is applied to the game of Bridge and outperforms PIMC.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Footnotes
1
It is an acceptable simplification of the real scoring of Bridge. At Bridge, the declarer has to make six more tricks than the number in his contract.
 
Literature
2.
go back to reference Buro, M., Long, J.R., Furtak, T., Sturtevant, N.: Improving state evaluation, inference, and search in trick-based card games. In: Twenty-First International Joint Conference on Artificial Intelligence (2009) Buro, M., Long, J.R., Furtak, T., Sturtevant, N.: Improving state evaluation, inference, and search in trick-based card games. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)
3.
go back to reference Cowling, P.I., Powley, E.J., Whitehouse, D.: Information set Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 4(2), 120–143 (2012) CrossRef Cowling, P.I., Powley, E.J., Whitehouse, D.: Information set Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 4(2), 120–143 (2012) CrossRef
4.
go back to reference Frank, I., Basin, D.: Search in games with incomplete information: a case study using bridge card play. Artif. Intell. 100(1–2), 87–123 (1998) MathSciNetCrossRef Frank, I., Basin, D.: Search in games with incomplete information: a case study using bridge card play. Artif. Intell. 100(1–2), 87–123 (1998) MathSciNetCrossRef
5.
go back to reference Frank, I., Basin, D.: A theoretical and empirical investigation of search in imperfect information games. Theoret. Comput. Sci. 252(1–2), 217–256 (2001) MathSciNetCrossRef Frank, I., Basin, D.: A theoretical and empirical investigation of search in imperfect information games. Theoret. Comput. Sci. 252(1–2), 217–256 (2001) MathSciNetCrossRef
6.
go back to reference Frank, I., Basin, D.A., Matsubara, H.: Finding optimal strategies for imperfect information games. In: AAAI/IAAI, pp. 500–507 (1998) Frank, I., Basin, D.A., Matsubara, H.: Finding optimal strategies for imperfect information games. In: AAAI/IAAI, pp. 500–507 (1998)
7.
go back to reference Furtak, T., Buro, M.: Recursive Monte Carlo search for imperfect information games. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. IEEE (2013) Furtak, T., Buro, M.: Recursive Monte Carlo search for imperfect information games. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. IEEE (2013)
10.
go back to reference Haglund, B.: Search algorithms for a bridge double dummy solver. Technical report (2010) Haglund, B.: Search algorithms for a bridge double dummy solver. Technical report (2010)
12.
go back to reference Levy, D.N.: The million pound bridge program. In: Heuristic Programming in Artificial Intelligence The First Computer Olympiad, pp. 95–103 (1989) Levy, D.N.: The million pound bridge program. In: Heuristic Programming in Artificial Intelligence The First Computer Olympiad, pp. 95–103 (1989)
13.
go back to reference Lockhart, E., et al.: Computing approximate equilibria in sequential adversarial games by exploitability descent. arXiv preprint arXiv:​1903.​05614 (2019) Lockhart, E., et al.: Computing approximate equilibria in sequential adversarial games by exploitability descent. arXiv preprint arXiv:​1903.​05614 (2019)
14.
go back to reference Long, J.R., Sturtevant, N.R., Buro, M., Furtak, T.: Understanding the success of perfect information Monte Carlo sampling in game tree search. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010) Long, J.R., Sturtevant, N.R., Buro, M., Furtak, T.: Understanding the success of perfect information Monte Carlo sampling in game tree search. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)
15.
go back to reference Mahmood, Z., Grant, A., Sharif, O.: Bridge for Beginners: A Complete Course. Pavilion Books (2014) Mahmood, Z., Grant, A., Sharif, O.: Bridge for Beginners: A Complete Course. Pavilion Books (2014)
16.
go back to reference Müller, M.: Partial order bounding: a new approach to evaluation in game tree search. Artif. Intell. 129(1–2), 279–311 (2001) MathSciNetCrossRef Müller, M.: Partial order bounding: a new approach to evaluation in game tree search. Artif. Intell. 129(1–2), 279–311 (2001) MathSciNetCrossRef
17.
go back to reference Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018) MathSciNetCrossRef Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018) MathSciNetCrossRef
18.
go back to reference Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017) CrossRef Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017) CrossRef
19.
go back to reference Sturtevant, N., Zinkevich, M., Bowling, M.: Prob-max \(\hat{\,}\) n: Playing n-player games with opponent models. In: AAAI, vol. 6, pp. 1057–1063 (2006) Sturtevant, N., Zinkevich, M., Bowling, M.: Prob-max \(\hat{\,}\) n: Playing n-player games with opponent models. In: AAAI, vol. 6, pp. 1057–1063 (2006)
21.
go back to reference Ventos, V., Costel, Y., Teytaud, O., Ventos, S.T.: Boosting a bridge artificial intelligence. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1280–1287. IEEE (2017) Ventos, V., Costel, Y., Teytaud, O., Ventos, S.T.: Boosting a bridge artificial intelligence. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1280–1287. IEEE (2017)
22.
go back to reference Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In: Advances in Neural Information Processing Systems, pp. 1729–1736 (2008) Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In: Advances in Neural Information Processing Systems, pp. 1729–1736 (2008)
Metadata
Title
The Search Algorithm for the Game of Bridge
Authors
Tristan Cazenave
Véronique Ventos
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-89453-5_1

Premium Partner