Skip to main content
Top
Published in:

20-05-2024

The Second-Order Sliding Mode Control Algorithm for Fixed-Time Stability of Nonlinear Systems

Authors: Qinjun Zeng, Minghui Jiang, Junhao Hu

Published in: Circuits, Systems, and Signal Processing | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article focuses on the fixed-time stability of a class of nonlinear systems with uncertain disturbances and time-varying delays. Different from other papers, the second-order sliding mode control algorithm (SOSMCA) is developed in this article to study the fixed-time stability of nonlinear systems for the first time. Additionally, the novel sliding mode surface (SMC) and second-order SMC are presented. And the stability and reachability of the sliding-mode dynamics under a faster settling time are demonstrated. Finally, the applicability and validity of the obtained SOSMCA are demonstrated by a simulation example with the F-404 aircraft engine model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • ΓΌber 102.000 BΓΌcher
  • ΓΌber 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + FΓΌhrung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet fΓΌr Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference G. Ambrosino, G. Celektano, F. Garofalo, Variable structure model reference adaptive control systems. Int. J. Control 39(6), 1339–1349 (1984) G. Ambrosino, G. Celektano, F. Garofalo, Variable structure model reference adaptive control systems. Int. J. Control 39(6), 1339–1349 (1984)
2.
go back to reference L. Arie, Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNet L. Arie, Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNet
3.
go back to reference Q. Chen, D. Tong, W. Zhou, Y. Xu, Adaptive exponential state estimation for Markovian jumping neural networks with multi-delays and Levy noises. Circuits Syst. Signal Process. 38(7), 3321–3339 (2019) Q. Chen, D. Tong, W. Zhou, Y. Xu, Adaptive exponential state estimation for Markovian jumping neural networks with multi-delays and Levy noises. Circuits Syst. Signal Process. 38(7), 3321–3339 (2019)
4.
go back to reference S. Ding, S. Li, Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)MathSciNet S. Ding, S. Li, Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)MathSciNet
5.
go back to reference S. Ding, J.H. Park, C.C. Chen, Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)MathSciNet S. Ding, J.H. Park, C.C. Chen, Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)MathSciNet
6.
go back to reference R. Errouissi, J. Yang, W.H. Chen, A.D. Ahmed, Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach. Int. J. Control 89(8), 1698–1710 (2016)MathSciNet R. Errouissi, J. Yang, W.H. Chen, A.D. Ahmed, Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach. Int. J. Control 89(8), 1698–1710 (2016)MathSciNet
7.
go back to reference M. Forti, M. Grazzini, P. Nistri, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys. D Nonlinear Phenom. 214, 88–99 (2006)MathSciNet M. Forti, M. Grazzini, P. Nistri, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys. D Nonlinear Phenom. 214, 88–99 (2006)MathSciNet
8.
go back to reference J.P. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)MathSciNet J.P. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)MathSciNet
9.
go back to reference K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Springer, Berlin, 2003) K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Springer, Berlin, 2003)
10.
go back to reference V.V. Huynh, New observer-based control design for mismatched uncertain systems with time-delay. Arch. Control Sci. 26(4), 597–610 (2016)MathSciNet V.V. Huynh, New observer-based control design for mismatched uncertain systems with time-delay. Arch. Control Sci. 26(4), 597–610 (2016)MathSciNet
11.
go back to reference S. Jiang, X. Lu, G. Cai, S. Cai, Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances. Int. J. Syst. Sci. 48, 1–9 (2017)MathSciNet S. Jiang, X. Lu, G. Cai, S. Cai, Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances. Int. J. Syst. Sci. 48, 1–9 (2017)MathSciNet
12.
go back to reference M. Jouini, S. Dhahri, A. Sellami, Combination of integral sliding mode control design with optimal feedback control for nonlinear uncertain systems. Trans. Inst. Meas. Control 41(5), 1331–1339 (2019) M. Jouini, S. Dhahri, A. Sellami, Combination of integral sliding mode control design with optimal feedback control for nonlinear uncertain systems. Trans. Inst. Meas. Control 41(5), 1331–1339 (2019)
13.
go back to reference A. Khanzadeh, I. Mohammadzaman, Fixed-time integral sliding mode control design for a class of uncertain nonlinear systems based on a novel fixed-time stability condition. Eur. J. Control 69, 100753 (2023)MathSciNet A. Khanzadeh, I. Mohammadzaman, Fixed-time integral sliding mode control design for a class of uncertain nonlinear systems based on a novel fixed-time stability condition. Eur. J. Control 69, 100753 (2023)MathSciNet
14.
go back to reference A. Khanzadeh, M. Pourgholi, Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear. Dyn. 88(4), 2637–2649 (2017)MathSciNet A. Khanzadeh, M. Pourgholi, Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear. Dyn. 88(4), 2637–2649 (2017)MathSciNet
15.
go back to reference S. Laghrouche, F. Plestan, A. Glumineau, Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)MathSciNet S. Laghrouche, F. Plestan, A. Glumineau, Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)MathSciNet
16.
go back to reference H. Li, J. Wang, L. Wu, H.K. Lam, Y. Gao, Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018) H. Li, J. Wang, L. Wu, H.K. Lam, Y. Gao, Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018)
17.
go back to reference X. Liao, L. Wang, P. Yu, Stability of Dynamical Systems, vol. 5 (Elsevier, Amsterdam, 2007) X. Liao, L. Wang, P. Yu, Stability of Dynamical Systems, vol. 5 (Elsevier, Amsterdam, 2007)
18.
go back to reference Y.H. Liu, H. Li, Q.S. Zhong, S.M. Zhong, Finite-time control for uncertain systems with nonlinear perturbations. Adv. Differ. Equ. 2017(1), 1–28 (2017)MathSciNet Y.H. Liu, H. Li, Q.S. Zhong, S.M. Zhong, Finite-time control for uncertain systems with nonlinear perturbations. Adv. Differ. Equ. 2017(1), 1–28 (2017)MathSciNet
19.
go back to reference L. Liu, S.H. Ding, A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint. Appl. Math. Comput. 394, 125752 (2021)MathSciNet L. Liu, S.H. Ding, A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint. Appl. Math. Comput. 394, 125752 (2021)MathSciNet
20.
go back to reference M. Liu, L. Zhang, P. Shi, Y. Zhao, Fault estimation sliding mode observer with digital communication constraints. IEEE Trans. Autom. Control 63(10), 3434–3441 (2018)MathSciNet M. Liu, L. Zhang, P. Shi, Y. Zhao, Fault estimation sliding mode observer with digital communication constraints. IEEE Trans. Autom. Control 63(10), 3434–3441 (2018)MathSciNet
21.
go back to reference A. Michalak, Finite-time and fixed-time stability analysis for time-varying systems: a dual approach. J. Frankl. Inst. 359(18), 10676–10687 (2022)MathSciNet A. Michalak, Finite-time and fixed-time stability analysis for time-varying systems: a dual approach. J. Frankl. Inst. 359(18), 10676–10687 (2022)MathSciNet
22.
go back to reference S. Mondal, C. Mahanta, Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty. ISA Trans. 52(3), 335–341 (2013) S. Mondal, C. Mahanta, Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty. ISA Trans. 52(3), 335–341 (2013)
23.
go back to reference B.B. Musmade, B.M. Patre, Robust sliding mode control of uncertain nonlinear systems with chattering alleviating scheme. Int. J. Mod. Phys. B 35(14), 66 (2021)MathSciNet B.B. Musmade, B.M. Patre, Robust sliding mode control of uncertain nonlinear systems with chattering alleviating scheme. Int. J. Mod. Phys. B 35(14), 66 (2021)MathSciNet
24.
go back to reference A. Polyakov, Fixed-time stabilization via second order sliding mode control. IFAC Proc. 45(9), 254–258 (2012) A. Polyakov, Fixed-time stabilization via second order sliding mode control. IFAC Proc. 45(9), 254–258 (2012)
25.
go back to reference A.L. Shang, W.J. Gu, Model-following adaptive second-order sliding model control of a class of nonlinear uncertain systems, in Conference: International Symposium on Instrumentation and Control Technology (2003) A.L. Shang, W.J. Gu, Model-following adaptive second-order sliding model control of a class of nonlinear uncertain systems, in Conference: International Symposium on Instrumentation and Control Technology (2003)
26.
go back to reference W.C. Sun, Y.Q. Yuan, Passivity based hierarchical multi-task tracking control for redundant manipulators with uncertainties. Automatica 155, 2023 (2023)MathSciNet W.C. Sun, Y.Q. Yuan, Passivity based hierarchical multi-task tracking control for redundant manipulators with uncertainties. Automatica 155, 2023 (2023)MathSciNet
27.
go back to reference D.B. Tong, C. Xua, Q.Y. Chen, W.N. Zhou, Sliding mode control of a class of nonlinear systems. J. Frankl. Inst. 357(3), 1560–1581 (2020)MathSciNet D.B. Tong, C. Xua, Q.Y. Chen, W.N. Zhou, Sliding mode control of a class of nonlinear systems. J. Frankl. Inst. 357(3), 1560–1581 (2020)MathSciNet
28.
go back to reference D. Tong, Q. Chen, W. Zhou, J. Zhou, Y. Xu, Multi-delay-dependent exponential synchronization for neutral-type stochastic complex networks with Markovian jump parameters via adaptive control. Neural Process. Lett. 49(3), 1611–1628 (2018) D. Tong, Q. Chen, W. Zhou, J. Zhou, Y. Xu, Multi-delay-dependent exponential synchronization for neutral-type stochastic complex networks with Markovian jump parameters via adaptive control. Neural Process. Lett. 49(3), 1611–1628 (2018)
29.
go back to reference D. Tong, P. Rao, Q. Chen, M.J. Ogorzalek, X. Li, Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308, 129–137 (2018) D. Tong, P. Rao, Q. Chen, M.J. Ogorzalek, X. Li, Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308, 129–137 (2018)
30.
go back to reference D. Tong, L. Zhang, W. Zhou, J. Zhou, Y. Xu, Asymptotical synchronization for delayed stochastic neural networks with uncertainty via adaptive control. Int. J. Control Autom. Syst. 14(3), 706–712 (2016) D. Tong, L. Zhang, W. Zhou, J. Zhou, Y. Xu, Asymptotical synchronization for delayed stochastic neural networks with uncertainty via adaptive control. Int. J. Control Autom. Syst. 14(3), 706–712 (2016)
32.
go back to reference V.I. Utkin, Sliding Mode in Control and Optimization (Springer, Berlin, 1992) V.I. Utkin, Sliding Mode in Control and Optimization (Springer, Berlin, 1992)
33.
go back to reference M. Vidyasagar, Nonlinear Systems Analysis, vol. 42 (SIAM, Philadelphia, 2002) M. Vidyasagar, Nonlinear Systems Analysis, vol. 42 (SIAM, Philadelphia, 2002)
35.
go back to reference J. Wang, X.M. Zhang, Q.L. Han, Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 77–88 (2015)MathSciNet J. Wang, X.M. Zhang, Q.L. Han, Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 77–88 (2015)MathSciNet
36.
go back to reference C.X. Wang, Y.Q. Wu, Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int. J. Control 92(6), 1426–1433 (2019)MathSciNet C.X. Wang, Y.Q. Wu, Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int. J. Control 92(6), 1426–1433 (2019)MathSciNet
37.
go back to reference Y. Wang, H.R. Karimi, H. Shen, Z. Fang, M. Liu, Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE. Trans. Cybern. 49(9), 3409–3419 (2019) Y. Wang, H.R. Karimi, H. Shen, Z. Fang, M. Liu, Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE. Trans. Cybern. 49(9), 3409–3419 (2019)
38.
go back to reference Y.Y. Wang, Y.Q. Xia, H.Y. Li, P.F. Zhou, A new integral sliding mode design method for nonlinear stochastic systems. Automatica 90, 304–309 (2018)MathSciNet Y.Y. Wang, Y.Q. Xia, H.Y. Li, P.F. Zhou, A new integral sliding mode design method for nonlinear stochastic systems. Automatica 90, 304–309 (2018)MathSciNet
39.
go back to reference J. Wu, X.F. Wang, R.R. Ma, X.H. Pang, L. Zhao, Chattering analysis on finite/fixed-time consensus of multi-agent systems. J. Chin. Inst. Eng. 45(1), 17–26 (2022) J. Wu, X.F. Wang, R.R. Ma, X.H. Pang, L. Zhao, Chattering analysis on finite/fixed-time consensus of multi-agent systems. J. Chin. Inst. Eng. 45(1), 17–26 (2022)
40.
go back to reference J. Xia, J. Zhang, W. Sun, B. Zhang, Z. Wang, Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1541–1548 (2019) J. Xia, J. Zhang, W. Sun, B. Zhang, Z. Wang, Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1541–1548 (2019)
41.
go back to reference Q.Z. Xiao, H.L. Liu, Z.H. Xu, Z.G. Yang, On collision avoiding fixed-time flocking with measurable diameter to a Cucker–Smale-type self-propelled particle model. Complexity 2020, 1–12 (2020) Q.Z. Xiao, H.L. Liu, Z.H. Xu, Z.G. Yang, On collision avoiding fixed-time flocking with measurable diameter to a Cucker–Smale-type self-propelled particle model. Complexity 2020, 1–12 (2020)
42.
go back to reference B. Xu, Composite learning finite-time control with application to quadrotors. IEEE Trans. Syst. Man Cybern. Syst. 13(99), 1–10 (2017) B. Xu, Composite learning finite-time control with application to quadrotors. IEEE Trans. Syst. Man Cybern. Syst. 13(99), 1–10 (2017)
43.
go back to reference C. Xu, D. Tong, Q. Chen, W. Zhou, P. Shi, Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1–11 (2019) C. Xu, D. Tong, Q. Chen, W. Zhou, P. Shi, Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1–11 (2019)
44.
go back to reference D.H. Zhang, Y.L. Si, Z. Chen, A coupled numerical framework for hybrid floating offshore wind turbine and oscillating water column wave energy converters. Energy Convers. Manag. 267, 2022 (2022) D.H. Zhang, Y.L. Si, Z. Chen, A coupled numerical framework for hybrid floating offshore wind turbine and oscillating water column wave energy converters. Energy Convers. Manag. 267, 2022 (2022)
45.
go back to reference J. Zhang, J.W. Xia, W. Sun, G. Zhuang, Z. Wang, Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl. Math. Comput. 338, 207–220 (2018)MathSciNet J. Zhang, J.W. Xia, W. Sun, G. Zhuang, Z. Wang, Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl. Math. Comput. 338, 207–220 (2018)MathSciNet
46.
go back to reference B.L. Zhang, Q. Han, X. Zhang, X. Yu, Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22(5), 1769–1783 (2014) B.L. Zhang, Q. Han, X. Zhang, X. Yu, Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22(5), 1769–1783 (2014)
47.
go back to reference X.L. Zhang, Y. Yi, X. Guang, Event-triggered integral sliding mode anti-disturbance control for nonlinear systems via T-S disturbance modeling. IEEE Access 9, 1855–1863 (2021) X.L. Zhang, Y. Yi, X. Guang, Event-triggered integral sliding mode anti-disturbance control for nonlinear systems via T-S disturbance modeling. IEEE Access 9, 1855–1863 (2021)
48.
go back to reference X.Y. Zhang, SMC for nonlinear systems with mismatched uncertainty using Lyapunov-function integral sliding mode. Int. J. Control 95(10), 2710–2725 (2022)MathSciNet X.Y. Zhang, SMC for nonlinear systems with mismatched uncertainty using Lyapunov-function integral sliding mode. Int. J. Control 95(10), 2710–2725 (2022)MathSciNet
49.
go back to reference X.Y. Zhang, X.D. Li, J.D. Cao, F. Miaadi, Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty. J. Frankl. Inst. 355(13), 5394–5413 (2018)MathSciNet X.Y. Zhang, X.D. Li, J.D. Cao, F. Miaadi, Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty. J. Frankl. Inst. 355(13), 5394–5413 (2018)MathSciNet
50.
go back to reference H. Zhao, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, Fixed-time synchronization of multi-links complex network. Mod. Phys. Lett. B 31(2), 1–24 (2017) H. Zhao, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, Fixed-time synchronization of multi-links complex network. Mod. Phys. Lett. B 31(2), 1–24 (2017)
51.
go back to reference B.C. Zheng, J.H. Park, Sliding mode control design for linear systems subject to quantization parameter mismatch. J. Frankl. Inst. 353(1), 37–53 (2016)MathSciNet B.C. Zheng, J.H. Park, Sliding mode control design for linear systems subject to quantization parameter mismatch. J. Frankl. Inst. 353(1), 37–53 (2016)MathSciNet
53.
go back to reference L. Zhou, J. She, S. Zhou, Robust H\(\infty \) control of an observer-based repetitive-control system. J. Frankl. Inst. 355(12), 4952–4969 (2018)MathSciNet L. Zhou, J. She, S. Zhou, Robust H\(\infty \) control of an observer-based repetitive-control system. J. Frankl. Inst. 355(12), 4952–4969 (2018)MathSciNet
54.
go back to reference Y. Zhou, C. Sun, Fixed time synchronization of complex dynamical networks, in Proceedings of the 2015 Chinese Intelligent Automation Conference, Wuhan, China (2015), pp. 163–170 Y. Zhou, C. Sun, Fixed time synchronization of complex dynamical networks, in Proceedings of the 2015 Chinese Intelligent Automation Conference, Wuhan, China (2015), pp. 163–170
55.
go back to reference Z.Y. Zuo, T. Lin, Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2014)MathSciNet Z.Y. Zuo, T. Lin, Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2014)MathSciNet
Metadata
Title
The Second-Order Sliding Mode Control Algorithm for Fixed-Time Stability of Nonlinear Systems
Authors
Qinjun Zeng
Minghui Jiang
Junhao Hu
Publication date
20-05-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 9/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02714-1