Skip to main content
Top

2020 | OriginalPaper | Chapter

The Slingshot Approach

Model-Driven Engineering the Coordination of Autoscaling Mechanisms for Elastic Cloud Applications

Authors : Floriment Klinaku, Steffen Becker

Published in: Advances in Service-Oriented and Cloud Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Distributed software systems composed of two or more self-adaptive components require the presence of a coordination mechanism to ensure the fulfilment of overall system objectives over time. Exploiting elasticity, for example, is one important objective for operating software systems in the cloud. The recently adopted architectural style of independent Microservices, each with its autoscaling mechanism, creates a class of software systems that are composed of several self-adaptive components which provision and release resources in an autonomous manner. Manually evaluating the impact of coordinating actions among autoscaling mechanisms can be complicated because of their large configuration space. So, to aid software engineers in designing and evaluating coordinating actions for achieving overall elastic applications, we propose the Slingshot approach which leverages model-driven quality prediction and search-based software engineering techniques. The approach has three facets: (1) the decomposition of a software architecture into elastic layers where the impact of adaptations propagates in a top-down order; (2) the extension of self-adaptive performance modelling approaches to allow engineers to specify and analyze dependencies between layers; and (3) finding the optimal adaptation strategy of a lower layer for a fixed upper layer context. In this paper, we present a road-map consisting of research objectives and expected benefits of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A group of users that share the same SLA against a SaaS.
 
Literature
2.
go back to reference Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue: Software Performance - Modeling and AnalysisCrossRef Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue: Software Performance - Modeling and AnalysisCrossRef
3.
go back to reference Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud auto scaling systems. In: CSUR (2018) Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud auto scaling systems. In: CSUR (2018)
4.
go back to reference Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comput. Syst. 87, 629–638 (2018)CrossRef Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comput. Syst. 87, 629–638 (2018)CrossRef
5.
go back to reference Harman, M., Briand, L., Wolf, A.: The current state and future of search based software engineering (2007) Harman, M., Briand, L., Wolf, A.: The current state and future of search based software engineering (2007)
6.
go back to reference Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics. Technical report. SPEC-RG-2016-01, SPEC Research Group – Cloud Working Group (2016) Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics. Technical report. SPEC-RG-2016-01, SPEC Research Group – Cloud Working Group (2016)
7.
go back to reference Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013) Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013)
8.
go back to reference Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architectural knowledge to efficiently conduct quality-of-service analyses. Softw. Pract. Exp. 48(2), 268–299 (2018)CrossRef Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architectural knowledge to efficiently conduct quality-of-service analyses. Softw. Pract. Exp. 48(2), 268–299 (2018)CrossRef
9.
go back to reference Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM, New York (2010) Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM, New York (2010)
10.
go back to reference Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–1442 (2009)CrossRef Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–1442 (2009)CrossRef
11.
go back to reference Vogel, T.: Model-driven engineering of self-adaptive software. Ph.D. thesis, Universität Potsdam (2018) Vogel, T.: Model-driven engineering of self-adaptive software. Ph.D. thesis, Universität Potsdam (2018)
Metadata
Title
The Slingshot Approach
Authors
Floriment Klinaku
Steffen Becker
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63161-1_13

Premium Partner