Skip to main content
Top

2024 | OriginalPaper | Chapter

The Spectrum Problem for the 4-Uniform 4-Colorable 3-Cycles with Maximum Degree 2

Authors : Ryan C. Bunge, Saad I. El-Zanati, Julie N. Kirkpatrick, Shania M. Sanderson, Michael J. Severino, William F. Turner

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The complete t-uniform hypergraph of order v, denoted \(K^{(t)}_v\), has a set V  with v elements as its vertex set and the set of all t-element subsets of V  as its edge set. For the purposes of this work, we define a 4-uniform 3-cycle of maximum degree 2 to be any 4-uniform hypergraph of maximum degree 2 that can be obtained by adding two vertices to each of the three edges in \(K^{(2)}_3\). There are five such 4-uniform hypergraphs up to isomorphism. Two of them have chromatic number 4. We give necessary and sufficient conditions for the existence of a decomposition of the complete 4-uniform hypergraph of order v into these 4-colorable 3-cycles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), no. 2, paper No. 112676, 8 pp. M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), no. 2, paper No. 112676, 8 pp.
3.
go back to reference Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108. Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108.
4.
go back to reference R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math.310 (2010), 3088–3095.MathSciNetCrossRef R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math.310 (2010), 3088–3095.MathSciNetCrossRef
5.
go back to reference J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars Combin.3 (1977), 47–66.MathSciNet J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars Combin.3 (1977), 47–66.MathSciNet
6.
go back to reference D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet
8.
go back to reference R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef
9.
go back to reference R. C. Bunge, S. I. El-Zanati, P. Florido, C. Gaskins, W. F. Turner, and P. Ward, On loose 3-cycle decompositions of complete 4-uniform hypergraphs, Australas. J. Combin.86 (2023), 336–350.MathSciNet R. C. Bunge, S. I. El-Zanati, P. Florido, C. Gaskins, W. F. Turner, and P. Ward, On loose 3-cycle decompositions of complete 4-uniform hypergraphs, Australas. J. Combin.86 (2023), 336–350.MathSciNet
10.
go back to reference R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet
11.
go back to reference R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet
12.
go back to reference R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef
13.
go back to reference R. C. Bunge, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs. In Combinatorics and Combinatorial Computing - MCCCC34, Normal, IL, USA, October 21–23, 2022, (Ed. A. Bahmanian), Springer Proceedings in Mathematics & Statistics, In press. R. C. Bunge, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs. In Combinatorics and Combinatorial Computing - MCCCC34, Normal, IL, USA, October 21–23, 2022, (Ed. A. Bahmanian), Springer Proceedings in Mathematics & Statistics, In press.
14.
go back to reference C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110. C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110.
15.
go back to reference S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages.
16.
go back to reference S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages.
18.
go back to reference H. Hanani, Decomposition of hypergraphs into octahedra, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 260–264, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979. H. Hanani, Decomposition of hypergraphs into octahedra, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 260–264, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979.
19.
go back to reference H. Jordon and G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.71 (2018), 312–323.MathSciNet H. Jordon and G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.71 (2018), 312–323.MathSciNet
20.
go back to reference P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages. P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages.
21.
go back to reference G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101. G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101.
22.
go back to reference J. Kuhl and M. W. Schroeder, Hamilton cycle decompositions of k-uniform k-partite hypergraphs, Australas. J. Combin.56 (2013), 23–37.MathSciNet J. Kuhl and M. W. Schroeder, Hamilton cycle decompositions of k-uniform k-partite hypergraphs, Australas. J. Combin.56 (2013), 23–37.MathSciNet
23.
go back to reference D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A126 (2014), 128–135.MathSciNetCrossRef D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A126 (2014), 128–135.MathSciNetCrossRef
24.
go back to reference M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin.45 (2009), 291–302.MathSciNet M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin.45 (2009), 291–302.MathSciNet
25.
go back to reference M. W. Schroeder, On Hamilton cycle decompositions of r-uniform r-partite hypergraphs, Discrete Math.315 (2014), 1–8.MathSciNetCrossRef M. W. Schroeder, On Hamilton cycle decompositions of r-uniform r-partite hypergraphs, Discrete Math.315 (2014), 1–8.MathSciNetCrossRef
26.
go back to reference R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975. R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975.
Metadata
Title
The Spectrum Problem for the 4-Uniform 4-Colorable 3-Cycles with Maximum Degree 2
Authors
Ryan C. Bunge
Saad I. El-Zanati
Julie N. Kirkpatrick
Shania M. Sanderson
Michael J. Severino
William F. Turner
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_18

Premium Partner