Skip to main content
Top
Published in: Archive of Applied Mechanics 12/2021

17-09-2021 | Original

The static and stress analyses of axially functionally graded exact super-elliptical beams via mixed FEM

Authors: Umit N. Aribas, Merve Ermis, Mehmet H. Omurtag

Published in: Archive of Applied Mechanics | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the static response and normal/shear stresses of axially functionally graded exact super-elliptical beams are presented via a warping-included mixed finite element method. Super-elliptical axis geometry is derived over the exact functions of planar curves. The constitutive equations are obtained from three-dimensional elasticity theory. The mixed finite element formulation is enhanced by including the warping deformations via displacement-type finite elements on the cross-section. The two-noded curved mixed finite element has twenty-four degrees of freedom in total. Satisfactory results are obtained for the warping-included normal/shear stresses, displacements and reactional forces of axially functionally graded exact super-elliptical beams even with lesser degrees of freedom compared to the three-dimensional behavior of brick finite elements. As benchmark examples, the influences of high axial curvature, cross-sectional geometry and material gradation on the static response and stresses of axially functionally graded exact super-elliptical beams are investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
11.
go back to reference Šalinić, S., Obradović, A., Tomović, A.: Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams. Compos. B Eng. 150, 135–143 (2018)CrossRef Šalinić, S., Obradović, A., Tomović, A.: Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams. Compos. B Eng. 150, 135–143 (2018)CrossRef
12.
go back to reference Mahmoud, M.A.: Natural frequency of axially functionally graded, tapered cantilever beams with tip masses. Eng. Struct. 187, 34–42 (2019)CrossRef Mahmoud, M.A.: Natural frequency of axially functionally graded, tapered cantilever beams with tip masses. Eng. Struct. 187, 34–42 (2019)CrossRef
15.
go back to reference Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. B Eng. 42, 801–808 (2011)CrossRef Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. B Eng. 42, 801–808 (2011)CrossRef
16.
go back to reference Shahba, A., Rajasekaran, S.: Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl. Math. Model. 36, 3094–3111 (2012)MathSciNetMATHCrossRef Shahba, A., Rajasekaran, S.: Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl. Math. Model. 36, 3094–3111 (2012)MathSciNetMATHCrossRef
17.
go back to reference Şimşek, M., Kocatürk, T., Akbaş, ŞD.: Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos. Struct. 94, 2358–2364 (2012)CrossRef Şimşek, M., Kocatürk, T., Akbaş, ŞD.: Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos. Struct. 94, 2358–2364 (2012)CrossRef
18.
go back to reference Rajasekaran, S.: Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 48, 1053–1070 (2013)MathSciNetMATHCrossRef Rajasekaran, S.: Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 48, 1053–1070 (2013)MathSciNetMATHCrossRef
19.
go back to reference Rajasekaran, S.: Static, stability and free vibration analysis of arches using a new differential transformation-based arch element. Int. J. Mech. Sci. 77, 82–97 (2013)CrossRef Rajasekaran, S.: Static, stability and free vibration analysis of arches using a new differential transformation-based arch element. Int. J. Mech. Sci. 77, 82–97 (2013)CrossRef
20.
go back to reference Shahba, A., Attarnejad, R., Hajilar, S.: A Mechanical-Based Solution for Axially Functionally Graded Tapered Euler-Bernoulli Beams. Mech. Adv. Mater. Struct. 20, 696–707 (2013)CrossRef Shahba, A., Attarnejad, R., Hajilar, S.: A Mechanical-Based Solution for Axially Functionally Graded Tapered Euler-Bernoulli Beams. Mech. Adv. Mater. Struct. 20, 696–707 (2013)CrossRef
21.
go back to reference Nguyen, N.-T., Kim, N.-I., Cho, I., Phung, Q.T., Lee, J.: Static analysis of transversely or axially functionally graded tapered beams. Mater. Res. Innov. 18, S2-260-S2-264 (2014)CrossRef Nguyen, N.-T., Kim, N.-I., Cho, I., Phung, Q.T., Lee, J.: Static analysis of transversely or axially functionally graded tapered beams. Mater. Res. Innov. 18, S2-260-S2-264 (2014)CrossRef
22.
go back to reference Şimşek, M.: Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos. Struct. 133, 968–978 (2015)CrossRef Şimşek, M.: Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos. Struct. 133, 968–978 (2015)CrossRef
23.
go back to reference Wang, Y., Wu, D.: Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load. Acta Astronaut. 127, 171–181 (2016)CrossRef Wang, Y., Wu, D.: Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load. Acta Astronaut. 127, 171–181 (2016)CrossRef
24.
go back to reference Calim, F.F.: Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Compos. B Eng. 98, 472–483 (2016)CrossRef Calim, F.F.: Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Compos. B Eng. 98, 472–483 (2016)CrossRef
25.
go back to reference Calim, F.F.: Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos. B Eng. 103, 98–112 (2016)CrossRef Calim, F.F.: Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos. B Eng. 103, 98–112 (2016)CrossRef
26.
go back to reference Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 160, 867–876 (2017)CrossRef Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 160, 867–876 (2017)CrossRef
27.
go back to reference Noori, A.R., Aslan, T.A., Temel, B.: An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos. Struct. 200, 701–710 (2018)CrossRef Noori, A.R., Aslan, T.A., Temel, B.: An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos. Struct. 200, 701–710 (2018)CrossRef
30.
go back to reference Han, H., Cao, D., Liu, L.: A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams. Compos. Struct. 226, 111270 (2019)CrossRef Han, H., Cao, D., Liu, L.: A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams. Compos. Struct. 226, 111270 (2019)CrossRef
31.
go back to reference Calim, F.F. (2019) Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler–Pasternak Elastic Foundation. Iran J. Sci. Technol. Trans. Civ. Eng. Calim, F.F. (2019) Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler–Pasternak Elastic Foundation. Iran J. Sci. Technol. Trans. Civ. Eng.
32.
go back to reference Temel, B., Noori, A.R.: Out-of-plane vibrations of shear-deformable AFG cycloidal beams with variable cross section. Appl. Acoust. 155, 84–96 (2019)CrossRef Temel, B., Noori, A.R.: Out-of-plane vibrations of shear-deformable AFG cycloidal beams with variable cross section. Appl. Acoust. 155, 84–96 (2019)CrossRef
33.
go back to reference Xie, K., Wang, Y., Fu, T.: Dynamic response of axially functionally graded beam with longitudinal–transverse coupling effect. Aerosp. Sci. Technol. 85, 85–95 (2019)CrossRef Xie, K., Wang, Y., Fu, T.: Dynamic response of axially functionally graded beam with longitudinal–transverse coupling effect. Aerosp. Sci. Technol. 85, 85–95 (2019)CrossRef
34.
go back to reference Huang, Y., Ouyang, Z.-Y.: Exact solution for bending analysis of two-directional functionally graded Timoshenko beams. Arch. Appl. Mech. 90, 1005–1023 (2020)CrossRef Huang, Y., Ouyang, Z.-Y.: Exact solution for bending analysis of two-directional functionally graded Timoshenko beams. Arch. Appl. Mech. 90, 1005–1023 (2020)CrossRef
39.
go back to reference Ravichandran, K.S.: Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng., A 201, 269–276 (1995)CrossRef Ravichandran, K.S.: Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng., A 201, 269–276 (1995)CrossRef
40.
go back to reference Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)CrossRef Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)CrossRef
41.
go back to reference Sankar, B.V., Tzeng, J.T.: Thermal Stresses in Functionally Graded Beams. AIAA J. 40, 1228–1232 (2002)CrossRef Sankar, B.V., Tzeng, J.T.: Thermal Stresses in Functionally Graded Beams. AIAA J. 40, 1228–1232 (2002)CrossRef
42.
go back to reference Chakraborty, A., Gopalakrishnan, S., Reddy, J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003)MATHCrossRef Chakraborty, A., Gopalakrishnan, S., Reddy, J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003)MATHCrossRef
43.
go back to reference Dryden, J.: Bending of inhomogeneous curved bars. Int. J. Solids Struct. 44, 4158–4166 (2007)MATHCrossRef Dryden, J.: Bending of inhomogeneous curved bars. Int. J. Solids Struct. 44, 4158–4166 (2007)MATHCrossRef
44.
go back to reference Zhong, Z., Yu, T.: Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 67, 481–488 (2007)CrossRef Zhong, Z., Yu, T.: Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 67, 481–488 (2007)CrossRef
45.
go back to reference Kadoli, R., Akhtar, K., Ganesan, N.: Static analysis of functionally graded beams using higher order shear deformation theory. Appl. Math. Model. 32, 2509–2525 (2008)MATHCrossRef Kadoli, R., Akhtar, K., Ganesan, N.: Static analysis of functionally graded beams using higher order shear deformation theory. Appl. Math. Model. 32, 2509–2525 (2008)MATHCrossRef
46.
go back to reference Li, X.-F., Wang, B.-L., Han, J.-C.: A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 80, 1197–1212 (2010)MATHCrossRef Li, X.-F., Wang, B.-L., Han, J.-C.: A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 80, 1197–1212 (2010)MATHCrossRef
47.
go back to reference Wang, M., Liu, Y.: Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A. Solids 37, 8–16 (2013)MathSciNetMATHCrossRef Wang, M., Liu, Y.: Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A. Solids 37, 8–16 (2013)MathSciNetMATHCrossRef
48.
go back to reference Arefi, M.: Elastic solution of a curved beam made of functionally graded materials with different cross sections. Steel Compos. Struct. 18, 659–672 (2015)CrossRef Arefi, M.: Elastic solution of a curved beam made of functionally graded materials with different cross sections. Steel Compos. Struct. 18, 659–672 (2015)CrossRef
49.
go back to reference De Pietro, G., Hui, Y., Giunta, G., Belouettar, S., Carrera, E., Hu, H.: Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams. Compos. Struct. 153, 514–528 (2016)CrossRef De Pietro, G., Hui, Y., Giunta, G., Belouettar, S., Carrera, E., Hu, H.: Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams. Compos. Struct. 153, 514–528 (2016)CrossRef
52.
go back to reference Ermis, M., Omurtag, M.H.: Static and dynamic analysis of conical helices based on exact geometry via mixed FEM. Int. J. Mech. Sci. 131–132, 296–304 (2017)CrossRef Ermis, M., Omurtag, M.H.: Static and dynamic analysis of conical helices based on exact geometry via mixed FEM. Int. J. Mech. Sci. 131–132, 296–304 (2017)CrossRef
53.
go back to reference Aribas, U.N., Ermis, M., Eratli, N., Omurtag, M.H.: The static and dynamic analyses of warping included composite exact conical helix by mixed FEM. Compos. B Eng. 160, 285–297 (2019)CrossRef Aribas, U.N., Ermis, M., Eratli, N., Omurtag, M.H.: The static and dynamic analyses of warping included composite exact conical helix by mixed FEM. Compos. B Eng. 160, 285–297 (2019)CrossRef
54.
go back to reference Jog, C.S., Mokashi, I.S.: A finite element method for the Saint-Venant torsion and bending problems for prismatic beams. Comput. Struct. 135, 62–72 (2014)CrossRef Jog, C.S., Mokashi, I.S.: A finite element method for the Saint-Venant torsion and bending problems for prismatic beams. Comput. Struct. 135, 62–72 (2014)CrossRef
55.
go back to reference Jones, R.M.: Mechanics of composite materials. Taylor & Francis, Philadelphia, PA (1999) Jones, R.M.: Mechanics of composite materials. Taylor & Francis, Philadelphia, PA (1999)
56.
go back to reference Yıldırım, V.: Governing equations of initially twisted elastic space rods made of laminated composite materials. Int. J. Eng. Sci. 37, 1007–1035 (1999)MATHCrossRef Yıldırım, V.: Governing equations of initially twisted elastic space rods made of laminated composite materials. Int. J. Eng. Sci. 37, 1007–1035 (1999)MATHCrossRef
57.
go back to reference Yousefi, A., Rastgoo, A.: Free vibration of functionally graded spatial curved beams. Compos. Struct. 93, 3048–3056 (2011)CrossRef Yousefi, A., Rastgoo, A.: Free vibration of functionally graded spatial curved beams. Compos. Struct. 93, 3048–3056 (2011)CrossRef
58.
go back to reference Bhimaraddi, A., Chandrashekhara, K.: Some observations on the modeling of laminated composite beams with general lay-ups. Compos. Struct. 19, 371–380 (1991)CrossRef Bhimaraddi, A., Chandrashekhara, K.: Some observations on the modeling of laminated composite beams with general lay-ups. Compos. Struct. 19, 371–380 (1991)CrossRef
60.
go back to reference Doğruoğlu, A.N., Omurtag, M.H.: Stability analysis of composite-plate foundation interaction by mixed fem. J. Eng. Mech. 126, 928–936 (2000) Doğruoğlu, A.N., Omurtag, M.H.: Stability analysis of composite-plate foundation interaction by mixed fem. J. Eng. Mech. 126, 928–936 (2000)
61.
go back to reference Oden, J.T., Reddy, J.N.: Variational methods in theoretical mechanics. Springer Science & Business Media, Berlin (2012)MATH Oden, J.T., Reddy, J.N.: Variational methods in theoretical mechanics. Springer Science & Business Media, Berlin (2012)MATH
62.
go back to reference Omurtag, M.H., Aköz, A.Y.: Hyperbolic paraboloid shell analysis via mixed finite element formulation. Int. J. Numer. Meth. Eng. 37, 3037–3056 (1994)MATHCrossRef Omurtag, M.H., Aköz, A.Y.: Hyperbolic paraboloid shell analysis via mixed finite element formulation. Int. J. Numer. Meth. Eng. 37, 3037–3056 (1994)MATHCrossRef
63.
go back to reference Struik, D.J.: Lectures on classical differential geometry. Dover Publications, New York (1988)MATH Struik, D.J.: Lectures on classical differential geometry. Dover Publications, New York (1988)MATH
64.
go back to reference Shi, P.-J., Huang, J.-G., Hui, C., Grissino-Mayer, H.D., Tardif, J.C., Zhai, L.-H., Wang, F.-S., Li, B.-L.: Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Front. Plant Sci. 6, (2015). Shi, P.-J., Huang, J.-G., Hui, C., Grissino-Mayer, H.D., Tardif, J.C., Zhai, L.-H., Wang, F.-S., Li, B.-L.: Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Front. Plant Sci. 6, (2015).
66.
go back to reference ANSYS ® Academic Research Mechanical, Release 17.1, Canonsburg, Pennsylvania. ANSYS ® Academic Research Mechanical, Release 17.1, Canonsburg, Pennsylvania.
Metadata
Title
The static and stress analyses of axially functionally graded exact super-elliptical beams via mixed FEM
Authors
Umit N. Aribas
Merve Ermis
Mehmet H. Omurtag
Publication date
17-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 12/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02033-w

Other articles of this Issue 12/2021

Archive of Applied Mechanics 12/2021 Go to the issue

Premium Partners