Skip to main content
Top

2012 | OriginalPaper | Chapter

9. The Status of Catalysts in PEMFC Technology

Authors : M. Aulice Scibioh, B. Viswanathan

Published in: Catalysis for Alternative Energy Generation

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymer electrolyte membrane fuel cells (PEMFCs), which convert the chemical energy stored in the fuel hydrogen directly and efficiently into electrical energy and water, have the potential to eliminate our fossil energy dependency and emissions, when the hydrogen is derived from renewable energy sources such as solar, wind, biomass, among other possibilities. PEMFCs are being developed as electrical power sources for vehicular, stationary, and portable power applications. In spite of tremendous R&D efforts in the advancements of PEMFC technology, the commercialization is still a long way to go due to the prohibitively high cost of platinum-based catalysts used in the electrodes. However, attempts were made to reduce the quantity of platinum-based catalyst and to extract the maximum activity from a given quantity of platinum in various ways including the development of supported system, employing binary or ternary Pt-based or non-Pt alloy systems, and finding alternate catalysts of various kinds with no platinum in them. In this chapter, we set to examine various logistics and underpinning science in PEMFC catalyst development in one frame analysis, and further, we propose future directions to push the frontiers ahead in order to realize PEMFC commercialization in aspects of both anode and in cathode catalysts of PEMFC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Barbir F (2005) PEM fuel cells: theory and practice. Elsevier/Academic Press, New York Barbir F (2005) PEM fuel cells: theory and practice. Elsevier/Academic Press, New York
4.
go back to reference Ju H, Wang CY (2004) Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc 151:A1954–A1960. doi:10.1149/1.1805523 Ju H, Wang CY (2004) Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc 151:A1954–A1960. doi:10.​1149/​1.​1805523
5.
go back to reference Li X (2006) Principle of fuel cells. Taylor & Francis, New York Li X (2006) Principle of fuel cells. Taylor & Francis, New York
6.
go back to reference Viswanathan B, Aulice Scibioh M (2008) Fuel cells: principles and applications. Taylor & Francis, New York Viswanathan B, Aulice Scibioh M (2008) Fuel cells: principles and applications. Taylor & Francis, New York
8.
go back to reference Papageorgopoulos DC, de Bruijn FA (2002) Examining a potential fuel cell poison: a voltammetry study of the influence of carbon dioxide on the hydrogen oxidation capability of carbon-supported Pt and PtRu anodes. J Electrochem Soc 149:140–145. doi:doi.org/10.1149/1.1430413 Papageorgopoulos DC, de Bruijn FA (2002) Examining a potential fuel cell poison: a voltammetry study of the influence of carbon dioxide on the hydrogen oxidation capability of carbon-supported Pt and PtRu anodes. J Electrochem Soc 149:140–145. doi:doi.​org/​10.​1149/​1.​1430413
9.
go back to reference Gottesfeld S, Pafford JJ (1988) A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 135:2651–2652. doi:doi.org/10.1149/1.2095401 Gottesfeld S, Pafford JJ (1988) A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 135:2651–2652. doi:doi.​org/​10.​1149/​1.​2095401
10.
go back to reference Schmidt VM, Oetjen H-F, Divisek J (1997) Performance improvement of a PEMFC using fuels with CO by addition of oxygen-evolving compounds. J Electrochem Soc 144:L237–L238. doi:doi.org/10.1149/1.1837928 Schmidt VM, Oetjen H-F, Divisek J (1997) Performance improvement of a PEMFC using fuels with CO by addition of oxygen-evolving compounds. J Electrochem Soc 144:L237–L238. doi:doi.​org/​10.​1149/​1.​1837928
11.
go back to reference Batista MS, Santiago EI, Assaf EM, Ticianelli EA (2005) Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system. J Power Sources 145:50–54. doi:10.1016/j.jpowsour.2004.12.032 Batista MS, Santiago EI, Assaf EM, Ticianelli EA (2005) Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system. J Power Sources 145:50–54. doi:10.​1016/​j.​jpowsour.​2004.​12.​032
12.
go back to reference Bellows RJ, Marucchi-Soos E, Reynolds RP (1998) The mechanism of CO mitigation in proton exchange membrane fuel cells using dilute H2O2 in the anode humidifier. Electrochem Solid State Lett 1:69–70. doi:S1099-0062(97)12-131-9 Bellows RJ, Marucchi-Soos E, Reynolds RP (1998) The mechanism of CO mitigation in proton exchange membrane fuel cells using dilute H2O2 in the anode humidifier. Electrochem Solid State Lett 1:69–70. doi:S1099-0062(97)12-131-9
14.
go back to reference Lee S-H, Han J-S, Lee K-Y (2002) Development of PROX (preferential oxidation of CO) system for 1 kWe PEMFC. Kor J Chem Eng 19:431–433. doi:10.1007/BF02697152 Lee S-H, Han J-S, Lee K-Y (2002) Development of PROX (preferential oxidation of CO) system for 1 kWe PEMFC. Kor J Chem Eng 19:431–433. doi:10.​1007/​BF02697152
17.
20.
go back to reference Gasteiger HA, Markovic NM, Ross PN Jr, Cairns EJ (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625. doi:10.1021/j100053a042 Gasteiger HA, Markovic NM, Ross PN Jr, Cairns EJ (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625. doi:10.​1021/​j100053a042
21.
go back to reference Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 degree C. J Phys Chem 99:16757–16767. doi:10.1021/j100045a042 Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 degree C. J Phys Chem 99:16757–16767. doi:10.​1021/​j100045a042
22.
go back to reference Grgur BN, Zhuang G, Markovic NM, Ross PN Jr (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913. doi:10.1021/jp9704168 Grgur BN, Zhuang G, Markovic NM, Ross PN Jr (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913. doi:10.​1021/​jp9704168
23.
go back to reference Ley KL, Liu R, Pu C, Fan Q, Leyarovska N, Segree C, Smotkin ES (1997) Methanol oxidation on single-phase Pt–Ru–Os ternary alloys. J Electrochem Soc 144:1543–1548. doi:doi.org/10.1149/1.1837638 Ley KL, Liu R, Pu C, Fan Q, Leyarovska N, Segree C, Smotkin ES (1997) Methanol oxidation on single-phase Pt–Ru–Os ternary alloys. J Electrochem Soc 144:1543–1548. doi:doi.​org/​10.​1149/​1.​1837638
25.
go back to reference Mukerjee S, Srinivasan S, Soriaga MP (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422. doi:doi.org/10.1149/1.2048590 Mukerjee S, Srinivasan S, Soriaga MP (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422. doi:doi.​org/​10.​1149/​1.​2048590
26.
go back to reference Wang K, Gasteiger HA, Markovic NM, Ross PN Jr (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt–Ru alloy surfaces. Electrochim Acta 41:2587–2593. doi:10.1016/0013-4686(96)00079-5 Wang K, Gasteiger HA, Markovic NM, Ross PN Jr (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt–Ru alloy surfaces. Electrochim Acta 41:2587–2593. doi:10.​1016/​0013-4686(96)00079-5
27.
go back to reference Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301. doi:10.1021/j100020a063 Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301. doi:10.​1021/​j100020a063
28.
go back to reference Koper MTM, Shubina TE, van Santen RA (2002) Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J Phys Chem B 106:686–692. doi:10.1021/jp0134188 Koper MTM, Shubina TE, van Santen RA (2002) Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J Phys Chem B 106:686–692. doi:10.​1021/​jp0134188
29.
go back to reference Schmidt VM, Bröckerhoff P, Höhlein B, Menzer R, Stimming U (1994) Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources 49:299–313. doi:10.1016/0378-7753(93)01830-B Schmidt VM, Bröckerhoff P, Höhlein B, Menzer R, Stimming U (1994) Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources 49:299–313. doi:10.​1016/​0378-7753(93)01830-B
30.
go back to reference Lin SD, Hsiao TC (1999) Morphology of carbon supported Pt–Ru electrocatalyst and the co tolerance of anodes for PEM fuel cells. J Phys Chem B 103:97–103. doi:10.1021/jp982296p Lin SD, Hsiao TC (1999) Morphology of carbon supported Pt–Ru electrocatalyst and the co tolerance of anodes for PEM fuel cells. J Phys Chem B 103:97–103. doi:10.​1021/​jp982296p
31.
32.
go back to reference Iorio T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230, http://dx.doi.org/10.1149/1.1598211 Iorio T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230, http://​dx.​doi.​org/​10.​1149/​1.​1598211
33.
go back to reference Lipkowski J, Ross PN (1998) Electrocatalysis. Wiley-VCH, New York Lipkowski J, Ross PN (1998) Electrocatalysis. Wiley-VCH, New York
35.
go back to reference Watanabe M, Moto S (1975) Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273. doi:10.1016/S0022-0728(75)80261-0 Watanabe M, Moto S (1975) Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273. doi:10.​1016/​S0022-0728(75)80261-0
36.
go back to reference Anderson AB, Grantscharova E, Seong S (1996) Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J Electrochem Soc 143:2075–2082, http://dx.doi.org/10.1149/1.1836952 Anderson AB, Grantscharova E, Seong S (1996) Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J Electrochem Soc 143:2075–2082, http://​dx.​doi.​org/​10.​1149/​1.​1836952
37.
go back to reference Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grger BN, Markovic NM, Ross PN Jr, Giallombardo PN, DeCatro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2:12–15, http://dx.doi.org/10.1149/1.1390718 Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grger BN, Markovic NM, Ross PN Jr, Giallombardo PN, DeCatro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2:12–15, http://​dx.​doi.​org/​10.​1149/​1.​1390718
38.
go back to reference Ticianelli EA, Mukerjee S, Lee SJ, McBreen J, Giallombardo JR, De Castro ES (1998) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 162 Ticianelli EA, Mukerjee S, Lee SJ, McBreen J, Giallombardo JR, De Castro ES (1998) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 162
39.
go back to reference Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported Pt x Mo y alloy catalysts. J Electrochem Soc 146:1613–1619, http://dx.doi.org/10.1149/1.1391815 Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported Pt x Mo y alloy catalysts. J Electrochem Soc 146:1613–1619, http://​dx.​doi.​org/​10.​1149/​1.​1391815
40.
go back to reference Grgur BN, Markovic NM, Ross PN (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 177 Grgur BN, Markovic NM, Ross PN (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 177
41.
go back to reference Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2:437–439. doi:doi.org/10.1149/1.1390863 Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2:437–439. doi:doi.​org/​10.​1149/​1.​1390863
42.
go back to reference Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314. doi:10.1039/B007768M Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314. doi:10.​1039/​B007768M
44.
go back to reference Gasteiger HA, Markovic NM, Ross PN (1996) Structural effects in electrocatalysis: electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal Lett 36:1–8. doi:10.1007/BF00807197 Gasteiger HA, Markovic NM, Ross PN (1996) Structural effects in electrocatalysis: electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal Lett 36:1–8. doi:10.​1007/​BF00807197
45.
go back to reference Markovic NM, Widelov A, Ross PN, Monteiro OR, Brown IG (1997) Electrooxidation of CO and CO/H2 mixtures on a Pt–Sn catalyst prepared by an implantation method. Catal Lett 43:161–166. doi:10.1023/A:1018907110025 Markovic NM, Widelov A, Ross PN, Monteiro OR, Brown IG (1997) Electrooxidation of CO and CO/H2 mixtures on a Pt–Sn catalyst prepared by an implantation method. Catal Lett 43:161–166. doi:10.​1023/​A:​1018907110025
46.
go back to reference Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ X-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65:1466–1469. doi:10.1103/PhysRevLett.65.1466 Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ X-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65:1466–1469. doi:10.​1103/​PhysRevLett.​65.​1466
48.
49.
go back to reference Gotz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43:3637–3644. doi:10.1016/S0013-4686(98)00121-2 Gotz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43:3637–3644. doi:10.​1016/​S0013-4686(98)00121-2
50.
go back to reference Holleck GL, Pasquariello DM, Clauson SL (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 150 Holleck GL, Pasquariello DM, Clauson SL (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 150
51.
go back to reference Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204. doi:10.1016/S0013-4686(02)00602-3 Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204. doi:10.​1016/​S0013-4686(02)00602-3
52.
go back to reference Venkataraman R, Kunz HR, Fenton JM (2003) Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells. J Electrochem Soc 150:A278–A284. doi:doi.org/10.1149/1.1543567 Venkataraman R, Kunz HR, Fenton JM (2003) Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells. J Electrochem Soc 150:A278–A284. doi:doi.​org/​10.​1149/​1.​1543567
54.
go back to reference Liang Y, Zhang H, Zhong H, Zhou X, Tian Z, Xu D, Yi B (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238:468–476. doi:10.1016/j.jcat.2006.01.005 Liang Y, Zhang H, Zhong H, Zhou X, Tian Z, Xu D, Yi B (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238:468–476. doi:10.​1016/​j.​jcat.​2006.​01.​005
55.
go back to reference Liang Y, Zhang H, Tian Z, Zhu X, Wang X, Yi B (2006) Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J Phys Chem B 110:7828–7834. doi:10.1021/jp0602732 Liang Y, Zhang H, Tian Z, Zhu X, Wang X, Yi B (2006) Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J Phys Chem B 110:7828–7834. doi:10.​1021/​jp0602732
56.
go back to reference Bohm H, Pohl FA (1968) Wiss. Ber, AEG-Telefunken, (Allg. Elektricitaets-Ges)-Telefunken 41: 46 Bohm H, Pohl FA (1968) Wiss. Ber, AEG-Telefunken, (Allg. Elektricitaets-Ges)-Telefunken 41: 46
57.
go back to reference von Benda K, Binder H, Köhling A, Sandstede G (1972) Electrocatalysis to fuel cells. University of Washington Press, Seattle von Benda K, Binder H, Köhling A, Sandstede G (1972) Electrocatalysis to fuel cells. University of Washington Press, Seattle
60.
go back to reference Christian JB, Mendenhall RG (2003) Tungsten containing fuel cell catalyst and method of making them. US Patent 6,656,870 Christian JB, Mendenhall RG (2003) Tungsten containing fuel cell catalyst and method of making them. US Patent 6,656,870
61.
go back to reference Christian JB, Mendenhall RG (2006) Tungsten containing fuel cell catalyst and method of making them. US Patent 7,060,648 Christian JB, Mendenhall RG (2006) Tungsten containing fuel cell catalyst and method of making them. US Patent 7,060,648
67.
go back to reference Li B, Qiao J, Zheng J, Yang D, Ma J (2009) Carbon-supported Ir-V nanoparticle as novel platinum-free anodic catalysts in proton exchange membrane fuel cell. Int J Hydrogen Energy 34:5144–5151. doi:10.1016/j.ijhydene.2009.04.013 Li B, Qiao J, Zheng J, Yang D, Ma J (2009) Carbon-supported Ir-V nanoparticle as novel platinum-free anodic catalysts in proton exchange membrane fuel cell. Int J Hydrogen Energy 34:5144–5151. doi:10.​1016/​j.​ijhydene.​2009.​04.​013
69.
go back to reference Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi:10.1021/jp047349j Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi:10.​1021/​jp047349j
70.
go back to reference Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566. doi:10.1021/ic9022486 Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566. doi:10.​1021/​ic9022486
71.
go back to reference Masel RI (1995) Principles of adsorption and reaction on solid surfaces. Wiley, New York Masel RI (1995) Principles of adsorption and reaction on solid surfaces. Wiley, New York
72.
75.
go back to reference Zhang CJ, Luo J, Njoki PN, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L, Fang B, Xu ZC (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1:454–466. doi:10.1039/B810734N Zhang CJ, Luo J, Njoki PN, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L, Fang B, Xu ZC (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1:454–466. doi:10.​1039/​B810734N
76.
go back to reference Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224. doi:10.1016/0022-0728(93)80380-Z Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224. doi:10.​1016/​0022-0728(93)80380-Z
77.
79.
go back to reference Wei Z, Guo H, Tang Z (1996) Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size. J Power Sources 62:233–236. doi:10.1016/S0378-7753(96)02425-1 Wei Z, Guo H, Tang Z (1996) Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size. J Power Sources 62:233–236. doi:10.​1016/​S0378-7753(96)02425-1
80.
go back to reference Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction. J Phys Chem B 108:17767–17774. doi:10.1021/jp0486649 Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction. J Phys Chem B 108:17767–17774. doi:10.​1021/​jp0486649
83.
go back to reference Bonakdarpour A, Wenzel J, Stevens DA, Sheng S, Monchesky TI, Lobel R, Atanasoski RT, Schmoeckel AK, Vernstrom GD, Debe MK, Dahn JR (2005) Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1–x M x (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells. J Electrochem Soc 152:A61–A72. doi:doi.org/10.1149/1.1828971 Bonakdarpour A, Wenzel J, Stevens DA, Sheng S, Monchesky TI, Lobel R, Atanasoski RT, Schmoeckel AK, Vernstrom GD, Debe MK, Dahn JR (2005) Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1–x M x (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells. J Electrochem Soc 152:A61–A72. doi:doi.​org/​10.​1149/​1.​1828971
84.
go back to reference Protsailo L, Haug A (2005) Electrochemical society meeting abstracts, 208th ECS Meeting, Los Angeles, CA Protsailo L, Haug A (2005) Electrochemical society meeting abstracts, 208th ECS Meeting, Los Angeles, CA
85.
go back to reference Thompsett D (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications vol. 3, Wiley, Chichester, UK Thompsett D (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications vol. 3, Wiley, Chichester, UK
86.
go back to reference Ralph TR, Keating JE, Collis NJ, Hyde TI (1997) ETSU Contract Report F/02/00038 Ralph TR, Keating JE, Collis NJ, Hyde TI (1997) ETSU Contract Report F/02/00038
87.
go back to reference Xiong L, Manthiram A (2005) Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J Electrochem Soc 152:A697–A703. doi:doi.org/10.1149/1.1862256 Xiong L, Manthiram A (2005) Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J Electrochem Soc 152:A697–A703. doi:doi.​org/​10.​1149/​1.​1862256
88.
go back to reference Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt−Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108:11024–11034. doi:10.1021/jp049034+ Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt−Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108:11024–11034. doi:10.​1021/​jp049034+
89.
go back to reference Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt−Ni and Pt−Co alloy catalysts. J Phys Chem B 106:4181–4191. doi:10.1021/jp013442l Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt−Ni and Pt−Co alloy catalysts. J Phys Chem B 106:4181–4191. doi:10.​1021/​jp013442l
91.
go back to reference Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305. doi:10.1126/science.1170377 Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305. doi:10.​1126/​science.​1170377
92.
go back to reference Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131:7542–7543. doi:10.1021/ja902256a Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131:7542–7543. doi:10.​1021/​ja902256a
93.
go back to reference Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222. doi:10.1126/science.1134569 Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222. doi:10.​1126/​science.​1134569
94.
go back to reference Stamenkovic VR, Flower B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497. doi:10.1126/science.1135941 Stamenkovic VR, Flower B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497. doi:10.​1126/​science.​1135941
95.
go back to reference Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.1038/nmat1840 Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.​1038/​nmat1840
96.
go back to reference Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135. doi:10.1002/anie.200462335 Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135. doi:10.​1002/​anie.​200462335
97.
go back to reference Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valero J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262. doi:10.1007/s11244-007-9003-x Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valero J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262. doi:10.​1007/​s11244-007-9003-x
98.
go back to reference Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 Reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964. doi:10.1021/jp0379953 Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 Reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964. doi:10.​1021/​jp0379953
99.
go back to reference Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704. doi:10.1021/jp055634c Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704. doi:10.​1021/​jp055634c
100.
go back to reference Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481. doi:10.1021/ja053695i Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481. doi:10.​1021/​ja053695i
101.
go back to reference Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core-shell nanoparticle supports. Electrochem Commun 9:2848–2853. doi:10.1016/j.elecom.2007.10.009 Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core-shell nanoparticle supports. Electrochem Commun 9:2848–2853. doi:10.​1016/​j.​elecom.​2007.​10.​009
102.
go back to reference Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46:8988–8991. doi:10.1002/anie.200703331 Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46:8988–8991. doi:10.​1002/​anie.​200703331
103.
104.
go back to reference Kammler Th, Küppers J (2001) The kinetics of the reaction of gaseous hydrogen atoms with oxygen on Cu(1 1 1) surfaces toward water. J Phys Chem B 105:8369–8374. doi:10.1021/jp0112222 Kammler Th, Küppers J (2001) The kinetics of the reaction of gaseous hydrogen atoms with oxygen on Cu(1 1 1) surfaces toward water. J Phys Chem B 105:8369–8374. doi:10.​1021/​jp0112222
105.
107.
go back to reference Limoges BR, Stanis RJ, Turner JA, Herring AM (2005) Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12−n)V n O40](3+n)− (n = 0–3). Electrochim Acta 50:1169–1179. doi:10.1016/j.electacta.2004.08.014 Limoges BR, Stanis RJ, Turner JA, Herring AM (2005) Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12−n)V n O40](3+n)− (n = 0–3). Electrochim Acta 50:1169–1179. doi:10.​1016/​j.​electacta.​2004.​08.​014
109.
go back to reference Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoe N (2004) Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode. J Electrochem Soc 151:A158–A163. doi:doi.org/10.1149/1.1633266 Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoe N (2004) Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode. J Electrochem Soc 151:A158–A163. doi:doi.​org/​10.​1149/​1.​1633266
111.
go back to reference Vante A, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323:431–432. doi:10.1038/323431a0 Vante A, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323:431–432. doi:10.​1038/​323431a0
112.
go back to reference Alcantara KS, Castellanos AR, Dante R, Feria OS (2006) Ru x Cr y Se z electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell. J Power Sources 157:114–120. doi:10.1016/j.jpowsour.2005.07.065 Alcantara KS, Castellanos AR, Dante R, Feria OS (2006) Ru x Cr y Se z electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell. J Power Sources 157:114–120. doi:10.1016/j.jpowsour.2005.07.065
115.
go back to reference Alkantara KS, Feria OS (2009) Comparative study of oxygen reduction reaction on Ru x M y Se z (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell. J Power Sources 192:165–169. doi:10.1016/j.jpowsour.2008.10.118 Alkantara KS, Feria OS (2009) Comparative study of oxygen reduction reaction on Ru x M y Se z (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell. J Power Sources 192:165–169. doi:10.​1016/​j.​jpowsour.​2008.​10.​118
116.
117.
go back to reference Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS (2010) Carbon supported Ru1−x Fe x Se y electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrogen Energy 35:6508–6517. doi:10.1016/j.ijhydene.2010.04.032 Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS (2010) Carbon supported Ru1−x Fe x Se y electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrogen Energy 35:6508–6517. doi:10.​1016/​j.​ijhydene.​2010.​04.​032
118.
go back to reference Sánchez GR, Feria OS (2010) Int J Hydrogen Energy, #5, 12105 Sánchez GR, Feria OS (2010) Int J Hydrogen Energy, #5, 12105
120.
go back to reference Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons RR, Campbell SA (2006) A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 110:10762–10770. doi:10.1021/jp057468e Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons RR, Campbell SA (2006) A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 110:10762–10770. doi:10.​1021/​jp057468e
122.
126.
go back to reference Jiang R, Xu L, Jin R, Dong S (1985) Fenxi huaxue. Anal Chem 13:270 Jiang R, Xu L, Jin R, Dong S (1985) Fenxi huaxue. Anal Chem 13:270
127.
go back to reference van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804. doi:10.1016/S0013-4686(98)80010-8 van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804. doi:10.​1016/​S0013-4686(98)80010-8
130.
go back to reference Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction. J Electrochem Soc 145:3493–3499. doi:doi.org/10.1149/1.1838833 Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction. J Electrochem Soc 145:3493–3499. doi:doi.​org/​10.​1149/​1.​1838833
131.
go back to reference Jiang R, Chu D (2000) Remarkably active catalysts for the electroreduction of O2 to H2O for use in an acidic electrolyte containing concentrated methanol. J Electrochem Soc 147:4605–4609. doi:doi.org/10.1149/1.1394109 Jiang R, Chu D (2000) Remarkably active catalysts for the electroreduction of O2 to H2O for use in an acidic electrolyte containing concentrated methanol. J Electrochem Soc 147:4605–4609. doi:doi.​org/​10.​1149/​1.​1394109
132.
go back to reference Bron M, Fiechter S, Hilgendorff M, Bogdanoff P (2002) Catalysts for oxygen reduction from heat-treated carbon-supported iron phenanthroline complexes. J Appl Electrochem 32:211–216. doi:10.1023/A:1014753613345 Bron M, Fiechter S, Hilgendorff M, Bogdanoff P (2002) Catalysts for oxygen reduction from heat-treated carbon-supported iron phenanthroline complexes. J Appl Electrochem 32:211–216. doi:10.​1023/​A:​1014753613345
133.
go back to reference Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated Iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107:9034–9041. doi:10.1021/jp030349j Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated Iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107:9034–9041. doi:10.​1021/​jp030349j
134.
137.
go back to reference Ma ZF, Xie XY, Ma XX, Zhang DY, Ren Q, Mohr NH, Schimidt VM (2006) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. Electrochem Commun 8:389–394. doi:10.1016/j.jpowsour.2007.08.028 Ma ZF, Xie XY, Ma XX, Zhang DY, Ren Q, Mohr NH, Schimidt VM (2006) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. Electrochem Commun 8:389–394. doi:10.​1016/​j.​jpowsour.​2007.​08.​028
138.
go back to reference Faubert G, Lalande G, Cote R, Guay D, Dodelet DP, Weng LT, Bertrand P, Dénès G (1996) Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41:1689–1701. doi:10.1016/0013-4686(95)00423-8 Faubert G, Lalande G, Cote R, Guay D, Dodelet DP, Weng LT, Bertrand P, Dénès G (1996) Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41:1689–1701. doi:10.​1016/​0013-4686(95)00423-8
139.
go back to reference Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) Activation of various Fe-based precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells. J Electrochem Soc 144:218–226. doi:doi.org/10.1149/1.1837388 Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) Activation of various Fe-based precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells. J Electrochem Soc 144:218–226. doi:doi.​org/​10.​1149/​1.​1837388
140.
go back to reference Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Poleunis C, Bertrand P (1998) Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 43:1969–1984. doi:10.1016/S0013-4686(97)10120-7 Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Poleunis C, Bertrand P (1998) Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 43:1969–1984. doi:10.​1016/​S0013-4686(97)10120-7
141.
go back to reference Cote R, Lalande G, Faubert G, Guay D, Dodelet JP, Denes G (1998) Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction. J Electrochem Soc 145:2411–2418. doi:doi.org/10.1149/1.1838651 Cote R, Lalande G, Faubert G, Guay D, Dodelet JP, Denes G (1998) Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction. J Electrochem Soc 145:2411–2418. doi:doi.​org/​10.​1149/​1.​1838651
142.
go back to reference Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43:341–353. doi:10.1016/S0013-4686(97)00087-X Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43:341–353. doi:10.​1016/​S0013-4686(97)00087-X
143.
go back to reference Faubert G, Cote R, Dodelet JP, Lefevre M, Bertrand P (1999) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride. Electrochim Acta 44:2589–2603. doi:10.1016/S0013-4686(98)00382-X Faubert G, Cote R, Dodelet JP, Lefevre M, Bertrand P (1999) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride. Electrochim Acta 44:2589–2603. doi:10.​1016/​S0013-4686(98)00382-X
144.
go back to reference Lefevre M, Dodelet JP, Bertrand J (2000) O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. J Phys Chem B 104:11238–11247. doi:10.1021/jp002444n Lefevre M, Dodelet JP, Bertrand J (2000) O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. J Phys Chem B 104:11238–11247. doi:10.​1021/​jp002444n
145.
go back to reference Lefèvre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106:8705–8713. doi:10.1021/jp020267f Lefèvre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106:8705–8713. doi:10.​1021/​jp020267f
146.
go back to reference Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim Acta 51:3202–3213. doi:10.1016/j.electacta.2005.09.012 Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim Acta 51:3202–3213. doi:10.​1016/​j.​electacta.​2005.​09.​012
149.
go back to reference Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107:1376–1386. doi:10.1021/jp021634q Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107:1376–1386. doi:10.​1021/​jp021634q
150.
go back to reference Lefevre M, Dodelet JP, Bertrand P (2005) Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of Co-based electrocatalysts. J Phys Chem B 109:16718–16724. doi:10.1021/jp0529265 Lefevre M, Dodelet JP, Bertrand P (2005) Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of Co-based electrocatalysts. J Phys Chem B 109:16718–16724. doi:10.​1021/​jp0529265
151.
go back to reference Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J Phys Chem B 103:2042–2049. doi:10.1021/jp9821735 Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J Phys Chem B 103:2042–2049. doi:10.​1021/​jp9821735
152.
go back to reference Zhao F, Harnisch F, Schroder W, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. doi:10.1016/j.elecom.2005.09.032 Zhao F, Harnisch F, Schroder W, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. doi:10.​1016/​j.​elecom.​2005.​09.​032
153.
go back to reference Fraga MA, Jordao E, Mendes MJ, Freita MMA, Faria JL, Figueredo JL (2002) Properties of carbon-supported platinum catalysts: role of carbon surface sites. J Catal 209:355–364. doi:10.1006/jcat.2002.3637 Fraga MA, Jordao E, Mendes MJ, Freita MMA, Faria JL, Figueredo JL (2002) Properties of carbon-supported platinum catalysts: role of carbon surface sites. J Catal 209:355–364. doi:10.​1006/​jcat.​2002.​3637
154.
go back to reference Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A (1995) Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol. J Electrochem Soc 142:2572–2576. doi:doi.org/10.1149/1.2050055 Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A (1995) Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol. J Electrochem Soc 142:2572–2576. doi:doi.​org/​10.​1149/​1.​2050055
155.
go back to reference McBreen J, Olender H, Srinivasan S, Kordesch K (1981) Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem 11:787–796. doi:10.1007/BF00615184 McBreen J, Olender H, Srinivasan S, Kordesch K (1981) Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem 11:787–796. doi:10.​1007/​BF00615184
157.
159.
go back to reference Zhang S, Zhu H, Yu H, Hou J, Yi B, Ming P (2007) The oxidation resistance of tungsten carbide as catalyst support for proton exchange membrane fuel cells. Chin J Catal 28:109–111. doi:10.1016/S1872-2067(07)60014-X Zhang S, Zhu H, Yu H, Hou J, Yi B, Ming P (2007) The oxidation resistance of tungsten carbide as catalyst support for proton exchange membrane fuel cells. Chin J Catal 28:109–111. doi:10.​1016/​S1872-2067(07)60014-X
161.
go back to reference Chhina H, Campbell S, Kesler O (2008) High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J Power Sources 179:50–59. doi:10.1016/j.jpowsour.2007.12.105 Chhina H, Campbell S, Kesler O (2008) High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J Power Sources 179:50–59. doi:10.​1016/​j.​jpowsour.​2007.​12.​105
163.
go back to reference Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806. doi:doi. 10.1002/pssb.200879537 Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806. doi:doi. 10.1002/pssb.200879537
164.
go back to reference Viswanathan B (2009) In: Kaneco S, Viswanathan B, Katsumata H (eds) Photo/electrochemistry and photobiology in the environment, energy and fuel, Research signpost, pp 1–14 Viswanathan B (2009) In: Kaneco S, Viswanathan B, Katsumata H (eds) Photo/electrochemistry and photobiology in the environment, energy and fuel, Research signpost, pp 1–14
Metadata
Title
The Status of Catalysts in PEMFC Technology
Authors
M. Aulice Scibioh
B. Viswanathan
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-0344-9_9

Premium Partners