Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2014

01-11-2014

The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy

Authors: M. R. Rokni, A. Zarei-Hanzaki, C. A. Widener, P. Changizian

Published in: Journal of Materials Engineering and Performance | Issue 11/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to study flow stress behavior for hot working of a typical Al-Zn-Mg-Cu alloy, experimental stress-strain data obtained from isothermal hot compression tests at strain rates of 0.004, 0.04, and 0.4 s−1 and deformation temperatures of 400, 450, 500, and 520 °C were used to develop the constitutive equation. The peak stress decreased with increasing deformation temperature and decreasing strain rate. The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent-type equation. Employing an Arrhenius-type constitutive equation, the influence of strain has been incorporated by considering the related material constants as functions of strain. The accuracy of the developed constitutive equations has been evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. The results indicate that the proposed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant temperature range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pretreatments, Mater. Sci. Eng. A, 1995, 197, p 181–198CrossRef E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pretreatments, Mater. Sci. Eng. A, 1995, 197, p 181–198CrossRef
2.
go back to reference G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19, p 537–541CrossRef G.Z. Quan, K.W. Liu, J. Zhou, and B. Chen, Dynamic Softening Behaviors of 7075 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19, p 537–541CrossRef
3.
go back to reference M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef
4.
go back to reference H.V. Atkinson, K. Burke, and G. Vaneetveld, Recrystallisation in the Semi-solid State in 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2008, 490, p 266–276CrossRef H.V. Atkinson, K. Burke, and G. Vaneetveld, Recrystallisation in the Semi-solid State in 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2008, 490, p 266–276CrossRef
5.
go back to reference M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi, Microstructure Evolution and Mechanical Properties of Backward Thixoextruded 7075 Aluminum Alloy, Mater. Des., 2012, 36, p 557–563CrossRef M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi, Microstructure Evolution and Mechanical Properties of Backward Thixoextruded 7075 Aluminum Alloy, Mater. Des., 2012, 36, p 557–563CrossRef
6.
go back to reference M.R. Rokni, A. Zarei-Hanzaki, and H.R. Abedi, Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 532, p 593–600CrossRef M.R. Rokni, A. Zarei-Hanzaki, and H.R. Abedi, Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 532, p 593–600CrossRef
7.
go back to reference A. Abolhasani, A. Zarei-Hanzaki, H.R. Abedi, and M.R. Rokni, The Room Temperature Mechanical Properties of Hot Rolled 7075 Aluminum Alloy, Mater. Des., 2012, 34, p 631–636CrossRef A. Abolhasani, A. Zarei-Hanzaki, H.R. Abedi, and M.R. Rokni, The Room Temperature Mechanical Properties of Hot Rolled 7075 Aluminum Alloy, Mater. Des., 2012, 34, p 631–636CrossRef
8.
go back to reference Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng. A, 2011, 530, p 367–372CrossRef Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng. A, 2011, 530, p 367–372CrossRef
9.
go back to reference P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef
10.
go back to reference S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484CrossRef S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484CrossRef
11.
go back to reference Y.C. Lin and G. Liu, A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature, Comput. Mater. Sci., 2010, 48, p 54–58CrossRef Y.C. Lin and G. Liu, A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature, Comput. Mater. Sci., 2010, 48, p 54–58CrossRef
12.
go back to reference G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of Seventh International Symposium on Ballistics, The Hague, 1983, p 541–547 G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of Seventh International Symposium on Ballistics, The Hague, 1983, p 541–547
13.
go back to reference F.J. Zerilli and R.W. Armstrong, Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825CrossRef
14.
go back to reference J.J. Jonas, C.M. Sellars, and McG Tegart, Strength and Structure Under Hot-Working Conditions, Int. Met. Rev., 1969, 14, p 1–24CrossRef J.J. Jonas, C.M. Sellars, and McG Tegart, Strength and Structure Under Hot-Working Conditions, Int. Met. Rev., 1969, 14, p 1–24CrossRef
15.
go back to reference Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in hot Working, Mater. Des., 2011, 32, p 733–759 Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in hot Working, Mater. Des., 2011, 32, p 733–759
16.
go back to reference M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955–4960CrossRef M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955–4960CrossRef
17.
go back to reference C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1996, 14, p 1136–1138CrossRef C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1996, 14, p 1136–1138CrossRef
18.
go back to reference F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scripta Mater., 2007, 57, p 759–762CrossRef F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scripta Mater., 2007, 57, p 759–762CrossRef
19.
go back to reference S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High-Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High-Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef
20.
go back to reference A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-2.5Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78CrossRef
21.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef
22.
go back to reference N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Effect of Thermomechanical Parameters on the Eutectic Silicon Characteristics in a Non-modified Cast A356 Aluminum Alloy, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Effect of Thermomechanical Parameters on the Eutectic Silicon Characteristics in a Non-modified Cast A356 Aluminum Alloy, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef
23.
go back to reference Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50, p 227–233CrossRef Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50, p 227–233CrossRef
24.
go back to reference L. Ou, Y. Nie, and Z. Zheng, Strain Compensation of the Constitutive Equation for High Temperature Flow Stress of a Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2014, 23, p 25–30CrossRef L. Ou, Y. Nie, and Z. Zheng, Strain Compensation of the Constitutive Equation for High Temperature Flow Stress of a Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2014, 23, p 25–30CrossRef
25.
go back to reference H.J. McQueen, E. Fry, and J. Belling, Comparative Constitutive Constants for Hot Working of Al-4.4Mg-0.7 Mn (AA5083), J. Mater. Eng. Perform., 2001, 10(2), p 164–172CrossRef H.J. McQueen, E. Fry, and J. Belling, Comparative Constitutive Constants for Hot Working of Al-4.4Mg-0.7 Mn (AA5083), J. Mater. Eng. Perform., 2001, 10(2), p 164–172CrossRef
26.
go back to reference M. Li, S. Cheng, A. Xiong, H. Wang, S. Shaobo, and L. Sun, Acquiring a Novel Constitutive Equation of a TC6 Alloy at High-Temperature Deformation, J. Mater. Eng. Perform., 2005, 14, p 263–266CrossRef M. Li, S. Cheng, A. Xiong, H. Wang, S. Shaobo, and L. Sun, Acquiring a Novel Constitutive Equation of a TC6 Alloy at High-Temperature Deformation, J. Mater. Eng. Perform., 2005, 14, p 263–266CrossRef
27.
go back to reference X. Li, M. Li, D. Zhu, and A. Xiong, Deformation Behavior of TC6 Alloy in Isothermal Forging, J. Mater. Eng. Perform., 2005, 14, p 671–676CrossRef X. Li, M. Li, D. Zhu, and A. Xiong, Deformation Behavior of TC6 Alloy in Isothermal Forging, J. Mater. Eng. Perform., 2005, 14, p 671–676CrossRef
28.
go back to reference Y. Yang, F. Li, Z. Yuan, and H. Qiao, A Modified Constitutive Equation for Aluminum Alloy Reinforced by Silicon Carbide Particles at Elevated Temperature, J. Mater. Eng. Perform., 2013, 22, p 2641–2655CrossRef Y. Yang, F. Li, Z. Yuan, and H. Qiao, A Modified Constitutive Equation for Aluminum Alloy Reinforced by Silicon Carbide Particles at Elevated Temperature, J. Mater. Eng. Perform., 2013, 22, p 2641–2655CrossRef
29.
go back to reference ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, ASTM, West Conshohocken, 2010 ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, ASTM, West Conshohocken, 2010
30.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uniaxial Compression Testing, Mater. Des., 2011, 32, p 2797–2802CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uniaxial Compression Testing, Mater. Des., 2011, 32, p 2797–2802CrossRef
31.
go back to reference S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068CrossRef S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068CrossRef
32.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004
33.
go back to reference S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072CrossRef S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072CrossRef
34.
go back to reference C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1994, 15, p 22–32CrossRef C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1994, 15, p 22–32CrossRef
35.
go back to reference T. Sheppard and A. Jackson, Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys, Mater. Sci. Technol., 1997, 13, p 203–207CrossRef T. Sheppard and A. Jackson, Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys, Mater. Sci. Technol., 1997, 13, p 203–207CrossRef
36.
go back to reference H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef
37.
go back to reference N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 7150 aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60, p 530–536CrossRef N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 7150 aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60, p 530–536CrossRef
38.
go back to reference H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 488, p 64–71CrossRef H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 488, p 64–71CrossRef
39.
go back to reference H.J. Mcqueen, W. Blum, and T. Sato, Ed., Aluminium Alloys, Physical and Mechanical Properties, ICAA6, Japan Institute of Metals, Sendai, 1998, p 99–112 H.J. Mcqueen, W. Blum, and T. Sato, Ed., Aluminium Alloys, Physical and Mechanical Properties, ICAA6, Japan Institute of Metals, Sendai, 1998, p 99–112
40.
go back to reference X. Huang, H. Zhang, Y. Han, and W. Wu, Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2010, 527, p 485–490CrossRef X. Huang, H. Zhang, Y. Han, and W. Wu, Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2010, 527, p 485–490CrossRef
41.
go back to reference J. Van de Langkruis, W.H. Kool, and S. Van der Zwaag, Assessment of Constitutive Equations in Modelling the Hot Deformability of Some Overaged Al-Mg-Si Alloys with varying Solute Contents, Mater. Sci. Eng. A, 1999, 266, p 135–145CrossRef J. Van de Langkruis, W.H. Kool, and S. Van der Zwaag, Assessment of Constitutive Equations in Modelling the Hot Deformability of Some Overaged Al-Mg-Si Alloys with varying Solute Contents, Mater. Sci. Eng. A, 1999, 266, p 135–145CrossRef
42.
go back to reference T. Ungar, E. Schafler, P. Hanak, S. Bernstorff, and M. Zehetbauer, Vacancy Production During Plastic Deformation in Copper Determined by In Situ X-ray Diffraction, Mater. Sci. Eng. A, 2007, 462, p 398–401CrossRef T. Ungar, E. Schafler, P. Hanak, S. Bernstorff, and M. Zehetbauer, Vacancy Production During Plastic Deformation in Copper Determined by In Situ X-ray Diffraction, Mater. Sci. Eng. A, 2007, 462, p 398–401CrossRef
43.
go back to reference Z. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 505, p 116–119CrossRef Z. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 505, p 116–119CrossRef
44.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef
Metadata
Title
The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy
Authors
M. R. Rokni
A. Zarei-Hanzaki
C. A. Widener
P. Changizian
Publication date
01-11-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1195-1

Other articles of this Issue 11/2014

Journal of Materials Engineering and Performance 11/2014 Go to the issue

Premium Partners