Skip to main content
Top
Published in:

01-10-2022 | STRENGTH AND PLASTICITY

The Structure and Mechanical Properties of the Ti–18Zr–15Nb Alloy Subjected to Equal Channel Angular Pressing at Different Temperatures

Authors: D. V. Gunderov, K. A. Kim, A. A. Churakova, V. A. Sheremet’ev, M. A. Derkach, Yu. A. Lebedev, A. G. Raab

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and properties of the Ti–18Zr–15Nb alloy subjected to equal channel angular pressing (ECAP) at 200°С (the number of ECAP cycles n = 1–4) and 500°С (the number of ECAP cycles n = 4 and n = 8) are studied. The main phase of the alloys in all the states is the bcc β phase. No clear presence of X-ray reflections belonging to the secondary α", ω, and α phases is found. The ECAP at 200°С leads to the formation of deformation macrobands that cut the entire sample. As ECAP temperature increases to 500°С, the deformation occurs without the formation of macrobands. According to optical microscopy data, after ECAP, the fragmentation occurs within grains outside of macrobands; microbands and deformation microband packets form. According to transmission electron microscopy data, ECAP results in refining the structure to submicron grains and deformation microbands. The ultimate strength increases as the number of ECAP cycles increases and reaches 960 MPa after ECAP at 200°С with n = 4; however, in this case, the plasticity decreases. The best combination of mechanical properties is achieved after ECAP at 500°С with n = 4; the ultimate strength is 825 MPa at the relatively high plasticity equal to δ = 16%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. M. Brunette, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications, Engineering Materials (Springer, Berlin, 2001).CrossRef D. M. Brunette, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications, Engineering Materials (Springer, Berlin, 2001).CrossRef
3.
go back to reference A. S. Konopatsky, S. M. Dubinskiy, Y. S. Zhukova, V. Sheremetyev, V. Brailovski, S. D. Prokoshkin, and M. R. Filonov, “Ternary Ti–Zr–Nb and quaternary Ti© 2022 Zr–Nb–Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties,” Mater. Sci. Eng., A 702, 301–311 (2017). https://doi.org/10.1016/j.msea.2017.07.046CrossRef A. S. Konopatsky, S. M. Dubinskiy, Y. S. Zhukova, V. Sheremetyev, V. Brailovski, S. D. Prokoshkin, and M. R. Filonov, “Ternary Ti–Zr–Nb and quaternary Ti© 2022 Zr–Nb–Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties,” Mater. Sci. Eng., A 702, 301–311 (2017). https://​doi.​org/​10.​1016/​j.​msea.​2017.​07.​046CrossRef
4.
go back to reference V. Sheremetyev, M. I. Petrzhik, Yu. Zhukova, and A. M. Kazakbiev, “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti–Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Part B 108 (3), 647–662 (2020). V. Sheremetyev, M. I. Petrzhik, Yu. Zhukova, and A. M. Kazakbiev, “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti–Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Part B 108 (3), 647–662 (2020).
5.
go back to reference S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng., A 438, 18–24 (2006).CrossRef S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng., A 438, 18–24 (2006).CrossRef
6.
go back to reference K. Otsuka and T. Kakeshita, “Science and technology of shape-memory alloys: new developments,” MRS Bull. 27 (2), 91–100 (2002).CrossRef K. Otsuka and T. Kakeshita, “Science and technology of shape-memory alloys: new developments,” MRS Bull. 27 (2), 91–100 (2002).CrossRef
8.
go back to reference V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, “Microstructure and properties of pure Ti processed by ECAP and cold extrusion,” Mater. Sci. Eng., A 303, 82–89 (2001).CrossRef V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, “Microstructure and properties of pure Ti processed by ECAP and cold extrusion,” Mater. Sci. Eng., A 303, 82–89 (2001).CrossRef
9.
go back to reference G. I. Raab, R. Z. Valiev, D. V. Gunderov, T. C. Lowe, A. Misra, and Y. T. Zhu, “Long-length ultrafine-grained titanium rods produced by ECAP- conform,” Mater. Sci. Forum 584–586, 80–85 (2008).CrossRef G. I. Raab, R. Z. Valiev, D. V. Gunderov, T. C. Lowe, A. Misra, and Y. T. Zhu, “Long-length ultrafine-grained titanium rods produced by ECAP- conform,” Mater. Sci. Forum 584–586, 80–85 (2008).CrossRef
11.
go back to reference R. Z. Valiev, I. Sabirov, E. G. Zemtsova, E. V. Parfenov, L. Dluhoš, and T. C. Lowe, “Nanostructured commercially pure titanium for development of miniaturized biomedical implants,” in Titanium in Medical and Dental Applications, Ed. by F. H. Froes and M. Qian (Woodhead, 2018), pp. 393–417. R. Z. Valiev, I. Sabirov, E. G. Zemtsova, E. V. Parfenov, L. Dluhoš, and T. C. Lowe, “Nanostructured commercially pure titanium for development of miniaturized biomedical implants,” in Titanium in Medical and Dental Applications, Ed. by F. H. Froes and M. Qian (Woodhead, 2018), pp. 393–417.
12.
go back to reference Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, and D. Zhang, “Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP),” Mater. Sci. Eng., C 33, 4551–4561 (2013).CrossRef Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, and D. Zhang, “Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP),” Mater. Sci. Eng., C 33, 4551–4561 (2013).CrossRef
13.
go back to reference D. Gunderov, S. Prokoshkin, A. Churakova, V. Sheremetyev, and I. Ramazanov, “Effect of HPT and Accumulative HPT on structure formation and microhardness of the novel Ti18Zr15Nb alloy,” Mater. Lett. 283, 128819 (2021).CrossRef D. Gunderov, S. Prokoshkin, A. Churakova, V. Sheremetyev, and I. Ramazanov, “Effect of HPT and Accumulative HPT on structure formation and microhardness of the novel Ti18Zr15Nb alloy,” Mater. Lett. 283, 128819 (2021).CrossRef
14.
go back to reference V. Sheremetyev, A. Churakova, M. Derkach, D. Gunderov, G. Raab, and S. Prokoshkin, “Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti–18Zr–15Nb (at %) alloy,” Mater. Lett. 305, 130760 (2021).CrossRef V. Sheremetyev, A. Churakova, M. Derkach, D. Gunderov, G. Raab, and S. Prokoshkin, “Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti–18Zr–15Nb (at %) alloy,” Mater. Lett. 305, 130760 (2021).CrossRef
15.
go back to reference K. Inaekyan, V. Brailovski, S. Prokoshkin, V. Pushin, S. Dubinskiy, and V. Sheremetyev, “Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys,” Mater. Charact. 103, 65–74 (2015).CrossRef K. Inaekyan, V. Brailovski, S. Prokoshkin, V. Pushin, S. Dubinskiy, and V. Sheremetyev, “Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys,” Mater. Charact. 103, 65–74 (2015).CrossRef
16.
go back to reference V. Sheremetyev, S. Dubinskiy, A. Kudryashova, S. Prokoshkin, and V. Brailovski, “In situ XRD study of stress-and cooling-induced martensitic transformations in ultrafine-and nano-grained superelastic Ti–18Zr–14Nb alloy,” J. Alloys Compd. 902, 163704 (2022).CrossRef V. Sheremetyev, S. Dubinskiy, A. Kudryashova, S. Prokoshkin, and V. Brailovski, “In situ XRD study of stress-and cooling-induced martensitic transformations in ultrafine-and nano-grained superelastic Ti–18Zr–14Nb alloy,” J. Alloys Compd. 902, 163704 (2022).CrossRef
17.
go back to reference V. A. Sheremet’ev, O. B. Akhmadkulov, V. S. Komarov, A. V. Korotitskii, K. E. Lukashevich, S. P. Galkin, V. A. Andreev, and S. D. Prokoshkin, “Thermomechanical behavior and structure formation of shape memory Ti–Zr–Nb alloy for medical applications,” Met. Sci. Heat Treat. 63, 3–12 (2021).CrossRef V. A. Sheremet’ev, O. B. Akhmadkulov, V. S. Komarov, A. V. Korotitskii, K. E. Lukashevich, S. P. Galkin, V. A. Andreev, and S. D. Prokoshkin, “Thermomechanical behavior and structure formation of shape memory Ti–Zr–Nb alloy for medical applications,” Met. Sci. Heat Treat. 63, 3–12 (2021).CrossRef
18.
go back to reference V. Brailovski, V. Kalinicheva, M. Letenneur, K. Lukashevich, V. Sheremetyev, and S. Prokoshkin, “Control of density and grain structure of a laser powder bed-fused superelastic Ti–18Zr–14Nb alloy: Simulation-driven process mapping,” Metals 10, 1697 (2020). https://doi.org/10.3390/met10121697CrossRef V. Brailovski, V. Kalinicheva, M. Letenneur, K. Lukashevich, V. Sheremetyev, and S. Prokoshkin, “Control of density and grain structure of a laser powder bed-fused superelastic Ti–18Zr–14Nb alloy: Simulation-driven process mapping,” Metals 10, 1697 (2020). https://​doi.​org/​10.​3390/​met10121697CrossRef
Metadata
Title
The Structure and Mechanical Properties of the Ti–18Zr–15Nb Alloy Subjected to Equal Channel Angular Pressing at Different Temperatures
Authors
D. V. Gunderov
K. A. Kim
A. A. Churakova
V. A. Sheremet’ev
M. A. Derkach
Yu. A. Lebedev
A. G. Raab
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22601019

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue