Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | OriginalPaper | Chapter

The Thermodynamics of Slag Forming Inorganic Phases in Biomass Combustion Processes

Authors : Daniel K. Lindberg, Fiseha Tesfaye

Published in: Energy Technology 2017

Publisher: Springer International Publishing

share
SHARE

Abstract

To reduce the use of fossil fuels and increase self-sufficiency in energy, nowadays, there is an increasing interest to produce heat, power and transportation fuels from renewable resources. Solid biomass is one of the most important renewable energy sources for meeting this target. However, fouling, slagging, and corrosion threaten long-term operation availability and costs of biomass power plants. Slags accumulated on the surfaces of superheaters, which decrease thermal efficiency, often constitute a considerable percentage of complex inorganic phases. However, thermodynamic properties of the complex inorganic phases and their combined effect, which will help to deal with the slag related problems during high-temperature biomass combustion processes, are not well known. In the present paper, thermodynamic properties of K-, Ca-, and Na-based inorganic phases and their mixtures under different gas conditions are both critically reviewed and experimentally studied. The obtained results are presented and discussed.
Literature
1.
go back to reference D. Lindberg et al., Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—current situation and future developments. Fuel Process. Technol. 105, 129–141 (2013) CrossRef D. Lindberg et al., Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—current situation and future developments. Fuel Process. Technol. 105, 129–141 (2013) CrossRef
2.
go back to reference M. Zevenhoven, P. Yrjas, M. Hupa, in Ash-forming Matter and Ash-related Problems, ed. By M. Lackner, F. Winter, A.K. Agarwal. Handbook of Combustion Vol. 4: Solid Fuels (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010), pp. 495–531 M. Zevenhoven, P. Yrjas, M. Hupa, in Ash-forming Matter and Ash-related Problems, ed. By M. Lackner, F. Winter, A.K. Agarwal. Handbook of Combustion Vol. 4: Solid Fuels (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010), pp. 495–531
3.
go back to reference A. Nordin, Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6(5), 339–347 (1994) CrossRef A. Nordin, Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6(5), 339–347 (1994) CrossRef
4.
go back to reference J. Werkelin, B.-J. Skrifvars, M. Hupa, Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy 29(6), 451–466 (2005) CrossRef J. Werkelin, B.-J. Skrifvars, M. Hupa, Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy 29(6), 451–466 (2005) CrossRef
5.
go back to reference J. Werkelin et al., Chemical forms of ash-forming elements in woody biomass fuels. Fuel 89(2), 481–493 (2010) CrossRef J. Werkelin et al., Chemical forms of ash-forming elements in woody biomass fuels. Fuel 89(2), 481–493 (2010) CrossRef
6.
go back to reference S.V. Vassilev et al., An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105, 40–76 (2013) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved) S.V. Vassilev et al., An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105, 40–76 (2013) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved)
7.
go back to reference S.V. Vassilev et al., An overview of the organic and inorganic phase composition of biomass. Fuel, 2012. 94, 1–33 (2012) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved) S.V. Vassilev et al., An overview of the organic and inorganic phase composition of biomass. Fuel, 2012. 94, 1–33 (2012) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved)
8.
go back to reference S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112, 391–449 (2013) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved) S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112, 391–449 (2013) (Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved)
9.
go back to reference M. Zevenhoven-Onderwater et al., The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel 79(11), 1353–1361 (2000) CrossRef M. Zevenhoven-Onderwater et al., The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel 79(11), 1353–1361 (2000) CrossRef
10.
go back to reference R. Backman, A. Nordin, in High Temperature Equilibrium Calculations of Ash Forming Elements in Biomass Combustion/Gasification Systems-State of the Art, Possibilities and Applications. International Biomass Ash Workshop (Graz, Austria, 1998) R. Backman, A. Nordin, in High Temperature Equilibrium Calculations of Ash Forming Elements in Biomass Combustion/Gasification Systems-State of the Art, Possibilities and Applications. International Biomass Ash Workshop (Graz, Austria, 1998)
11.
go back to reference N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, ed. By R.W. Cahn Pergamon Materials Series, vol. 1 (Pergamon, 1998), p. 479 N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, ed. By R.W. Cahn Pergamon Materials Series, vol. 1 (Pergamon, 1998), p. 479
12.
go back to reference L. Kaufman, Foreword. Calphad 26(2), 141–141 (2002) L. Kaufman, Foreword. Calphad 26(2), 141–141 (2002)
13.
go back to reference B. Hallstedt, Z.-K. Liu, Software for thermodynamic and kinetic calculation and modelling. Calphad 33(2), 265–265 (2009) B. Hallstedt, Z.-K. Liu, Software for thermodynamic and kinetic calculation and modelling. Calphad 33(2), 265–265 (2009)
14.
go back to reference C.W. Bale et al., FactSage thermochemical software and databases—recent developments. Calphad 33(2), 295–311 (2009) CrossRef C.W. Bale et al., FactSage thermochemical software and databases—recent developments. Calphad 33(2), 295–311 (2009) CrossRef
15.
go back to reference C.W. Bale et al., FactSage thermochemical software and databases. Calphad 26(2), 189–228 (2002) CrossRef C.W. Bale et al., FactSage thermochemical software and databases. Calphad 26(2), 189–228 (2002) CrossRef
16.
go back to reference C.W. Bale et al., FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35–53 (2016) CrossRef C.W. Bale et al., FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35–53 (2016) CrossRef
18.
go back to reference R.H. Davies et al., MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26(2), 229–271 (2002) CrossRef R.H. Davies et al., MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26(2), 229–271 (2002) CrossRef
19.
go back to reference J.-O. Andersson et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002) CrossRef J.-O. Andersson et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002) CrossRef
20.
go back to reference G. Eriksson, E. Koenigsberger, FactSage and ChemApp: two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl. Chem. 80(6), 1293–1302 (2008) CrossRef G. Eriksson, E. Koenigsberger, FactSage and ChemApp: two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl. Chem. 80(6), 1293–1302 (2008) CrossRef
21.
go back to reference G. Eriksson, P. Spencer, H. Sippola, in A general thermodynamic software interface (Lehrstuhl Theoretische Huttenkunde, RWTH Aachen, Germany, 1995), pp. 115–126 G. Eriksson, P. Spencer, H. Sippola, in A general thermodynamic software interface (Lehrstuhl Theoretische Huttenkunde, RWTH Aachen, Germany, 1995), pp. 115–126
22.
go back to reference S. Petersen, K. Hack, The thermochemistry library ChemApp and its applications. Int. J. Mater. Res. 98(10), 935–945 (2007) CrossRef S. Petersen, K. Hack, The thermochemistry library ChemApp and its applications. Int. J. Mater. Res. 98(10), 935–945 (2007) CrossRef
23.
go back to reference P. Koukkari et al., ChemSheet—an efficient worksheet tool for thermodynamic process simulation. EUROMAT 99, Biannu. Meet. Fed. Eur. Mater. Soc. (FEMS) 3, 323–330 (2000) P. Koukkari et al., ChemSheet—an efficient worksheet tool for thermodynamic process simulation. EUROMAT 99, Biannu. Meet. Fed. Eur. Mater. Soc. (FEMS) 3, 323–330 (2000)
24.
go back to reference A.D. Pelton, Thermodynamic models and databases for slags, fluxes and salts. Trans. Inst. Min. Metall. Sect. C Min. Process. Extr. Metall. 114(3), 172–180 (2005) CrossRef A.D. Pelton, Thermodynamic models and databases for slags, fluxes and salts. Trans. Inst. Min. Metall. Sect. C Min. Process. Extr. Metall. 114(3), 172–180 (2005) CrossRef
25.
go back to reference R. Schmid-Fetzer et al., Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31(1), 38–52 (2007) CrossRef R. Schmid-Fetzer et al., Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31(1), 38–52 (2007) CrossRef
26.
go back to reference D. Lindberg, Thermochemistry and melting properties of alkali salt mixtures in black liquor conversion processes. Doctoral thesis, in Laboratory of Inorganic Chemistry, Åbo Akademi University: Turku, Finland, 2007, p. 109 D. Lindberg, Thermochemistry and melting properties of alkali salt mixtures in black liquor conversion processes. Doctoral thesis, in Laboratory of Inorganic Chemistry, Åbo Akademi University: Turku, Finland, 2007, p. 109
27.
go back to reference D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (Na 2SO 4 + K 2SO 4 + Na 2S 2O 7 + K 2S 2O 7) system. J. Chem. Thermodyn. 38(12), 1568–1583 (2006) CrossRef D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (Na 2SO 4 + K 2SO 4 + Na 2S 2O 7 + K 2S 2O 7) system. J. Chem. Thermodyn. 38(12), 1568–1583 (2006) CrossRef
28.
go back to reference D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (Na 2CO 3 + Na 2SO 4 + Na 2S + K 2CO 3 + K 2SO 4 + K 2S) system. J. Chem. Thermodyn. 39(6), 942–960 (2007) CrossRef D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (Na 2CO 3 + Na 2SO 4 + Na 2S + K 2CO 3 + K 2SO 4 + K 2S) system. J. Chem. Thermodyn. 39(6), 942–960 (2007) CrossRef
29.
go back to reference D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + Na 2SO 4 + Na 2CO 3 + KCl + K 2SO 4 + K 2CO 3) system. J. Chem. Thermodyn. 39(7), 1001–1021 (2007) CrossRef D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + Na 2SO 4 + Na 2CO 3 + KCl + K 2SO 4 + K 2CO 3) system. J. Chem. Thermodyn. 39(7), 1001–1021 (2007) CrossRef
30.
go back to reference D. Lindberg et al., Thermodynamic evaluation and optimization of the (Na + K + S) system. J. Chem. Thermodyn. 38(7), 900–915 (2006) CrossRef D. Lindberg et al., Thermodynamic evaluation and optimization of the (Na + K + S) system. J. Chem. Thermodyn. 38(7), 900–915 (2006) CrossRef
31.
go back to reference D. Lindberg et al., A thermodynamic and phase equilibrium model for the smelt in recovery boilers. Annual Meeting Preprints—Pulp and Paper Technical Association of Canada, 91st, Montreal, QC, Canada, 8–10 Feb 2005. vol. B, pp. B31–B35 (2005) D. Lindberg et al., A thermodynamic and phase equilibrium model for the smelt in recovery boilers. Annual Meeting Preprints—Pulp and Paper Technical Association of Canada, 91st, Montreal, QC, Canada, 8–10 Feb 2005. vol. B, pp. B31–B35 (2005)
32.
go back to reference B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42(4), 297–301 (1981) CrossRef B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42(4), 297–301 (1981) CrossRef
33.
go back to reference A.G. Bergman, A.K. Sementsova, The ternary systems K 2Cl 2–Na 2SO 4–Na 2CO 3 and Na 2Cl 2–K 2SO 4–K 2CO 3. Zh. Neorg. Khim. 3(2), 393–402 (1958) A.G. Bergman, A.K. Sementsova, The ternary systems K 2Cl 2–Na 2SO 4–Na 2CO 3 and Na 2Cl 2–K 2SO 4–K 2CO 3. Zh. Neorg. Khim. 3(2), 393–402 (1958)
34.
go back to reference A.K. Sementsova, A.G. Bergman, The ternary system of five ions, Na 2CO 3–K 2Cl 2–K 2SO 4. Zh. Obshch. Khim. 26, 992–996 (1956) A.K. Sementsova, A.G. Bergman, The ternary system of five ions, Na 2CO 3–K 2Cl 2–K 2SO 4. Zh. Obshch. Khim. 26, 992–996 (1956)
35.
go back to reference N.J. Stead et al., in Formation of Low Melting Deposits in a Modern Kraft Recovery Boiler. 1995 International Chemical Recovery Conference (CPPA, Toronto, Ontario, Canada, 1995) N.J. Stead et al., in Formation of Low Melting Deposits in a Modern Kraft Recovery Boiler. 1995 International Chemical Recovery Conference (CPPA, Toronto, Ontario, Canada, 1995)
36.
go back to reference J. Frederick, Wm. James et al., Mechanisms of sintering of alkali metal salt aerosol deposits in recovery boilers. Fuel 83(11–12), 1659–1664 (2004) J. Frederick, Wm. James et al., Mechanisms of sintering of alkali metal salt aerosol deposits in recovery boilers. Fuel 83(11–12), 1659–1664 (2004)
37.
go back to reference A.R. Walsh, A. Verloop, J.F. La Fond, Thermal analysis of recovery boiler deposits. Tappi J. 76(6), 208–209 (1993) A.R. Walsh, A. Verloop, J.F. La Fond, Thermal analysis of recovery boiler deposits. Tappi J. 76(6), 208–209 (1993)
38.
go back to reference P. Chartrand, A.D. Pelton, Thermodynamic evaluation and optimization of the LiCl–NaCl–KCl–RbCl–CsCl–MgCl 2–CaCl 2 system using the modified quasi-chemical model. Metall. Mater. Trans. A 32A(6), 1361–1383 (2001) P. Chartrand, A.D. Pelton, Thermodynamic evaluation and optimization of the LiCl–NaCl–KCl–RbCl–CsCl–MgCl 2–CaCl 2 system using the modified quasi-chemical model. Metall. Mater. Trans. A 32A(6), 1361–1383 (2001)
39.
go back to reference C. Robelin, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl 2 + CaCl 2 + ZnCl 2) system. J. Chem. Thermodyn. 43(3), 377–391 (2011) CrossRef C. Robelin, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl 2 + CaCl 2 + ZnCl 2) system. J. Chem. Thermodyn. 43(3), 377–391 (2011) CrossRef
40.
go back to reference D. Lindberg, P. Chartrand, Thermodynamic evaluation and optimization of the (Ca + C + O + S) system. J. Chem. Thermodyn. 41(10), 1111–1124 (2009) CrossRef D. Lindberg, P. Chartrand, Thermodynamic evaluation and optimization of the (Ca + C + O + S) system. J. Chem. Thermodyn. 41(10), 1111–1124 (2009) CrossRef
41.
go back to reference M. Blander, A.D. Pelton, Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasichemical equations. Geochim. Cosmochim. Acta 51, 85–95 (1987) CrossRef M. Blander, A.D. Pelton, Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasichemical equations. Geochim. Cosmochim. Acta 51, 85–95 (1987) CrossRef
42.
go back to reference A.D. Pelton, M. Blander, Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach-application to silicate slags. Metall. Mater. Trans. B 17B, 805–815 (1986) CrossRef A.D. Pelton, M. Blander, Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach-application to silicate slags. Metall. Mater. Trans. B 17B, 805–815 (1986) CrossRef
43.
go back to reference A.D. Pelton, P. Chartrand, G. Eriksson, The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall. Mater. Trans. A 32(6), 1409–1416 (2001) CrossRef A.D. Pelton, P. Chartrand, G. Eriksson, The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall. Mater. Trans. A 32(6), 1409–1416 (2001) CrossRef
44.
go back to reference A.D. Pelton, A database and sublattice model for molten salts. Calphad 12(2), 127–142 (1988) CrossRef A.D. Pelton, A database and sublattice model for molten salts. Calphad 12(2), 127–142 (1988) CrossRef
45.
go back to reference Y.-B. Kang, A. Pelton, Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall. Mater. Trans. B 40(6), 979–994 (2009) CrossRef Y.-B. Kang, A. Pelton, Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall. Mater. Trans. B 40(6), 979–994 (2009) CrossRef
46.
go back to reference A.D. Pelton, Thermodynamic calculations of chemical solubilities of gases in oxide melts and glasses. Glass Sci. Technol. 72(7), 214–226 (1999) A.D. Pelton, Thermodynamic calculations of chemical solubilities of gases in oxide melts and glasses. Glass Sci. Technol. 72(7), 214–226 (1999)
47.
go back to reference I.-H. Jung, Thermodynamic modeling of gas solubility in molten slags (II)-water. ISIJ Int. 46(11), 1587–1593 (2006) CrossRef I.-H. Jung, Thermodynamic modeling of gas solubility in molten slags (II)-water. ISIJ Int. 46(11), 1587–1593 (2006) CrossRef
48.
go back to reference I.-H. Jung, Thermodynamic modeling of gas solubility in molten slags (I)-carbon and nitrogen. ISIJ Int. 46(11), 1577–1586 (2006) CrossRef I.-H. Jung, Thermodynamic modeling of gas solubility in molten slags (I)-carbon and nitrogen. ISIJ Int. 46(11), 1577–1586 (2006) CrossRef
49.
go back to reference I.-H. Jung, S. Decterov, A. Pelton, Critical thermodynamic evaluation and optimization of the MgO–Al 2O 3, CaO–MgO–Al 2O 3, and MgO–Al 2O 3–SiO 2 systems. J. Phase Equilib. Diffus. 25(4), 329–345 (2004) CrossRef I.-H. Jung, S. Decterov, A. Pelton, Critical thermodynamic evaluation and optimization of the MgO–Al 2O 3, CaO–MgO–Al 2O 3, and MgO–Al 2O 3–SiO 2 systems. J. Phase Equilib. Diffus. 25(4), 329–345 (2004) CrossRef
50.
go back to reference I.-H. Jung, S. Decterov, A. Pelton, Critical thermodynamic evaluation and optimization of the FeO–Fe 2O 3–MgO–SiO 2 system. Metall. Mater. Trans. B 35(5), 877–889 (2004) CrossRef I.-H. Jung, S. Decterov, A. Pelton, Critical thermodynamic evaluation and optimization of the FeO–Fe 2O 3–MgO–SiO 2 system. Metall. Mater. Trans. B 35(5), 877–889 (2004) CrossRef
51.
go back to reference I.-H. Jung, S.A. Decterov, A.D. Pelton, Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO 2 system. J. Eur. Ceram. Soc. 25(4), 313–333 (2005) CrossRef I.-H. Jung, S.A. Decterov, A.D. Pelton, Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO 2 system. J. Eur. Ceram. Soc. 25(4), 313–333 (2005) CrossRef
52.
go back to reference E. Jak et al., Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems. Metall. Mater. Trans. B 31B(4), 621–630 (2000) CrossRef E. Jak et al., Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems. Metall. Mater. Trans. B 31B(4), 621–630 (2000) CrossRef
53.
go back to reference P. Wu, G. Eriksson, A.D. Pelton, Optimization of the thermodynamic properties and phase diagrams of the sodium oxide-silica and potassium oxide-silica systems. J. Am. Ceram. Soc. 76(8), 2059–2064 (1993) CrossRef P. Wu, G. Eriksson, A.D. Pelton, Optimization of the thermodynamic properties and phase diagrams of the sodium oxide-silica and potassium oxide-silica systems. J. Am. Ceram. Soc. 76(8), 2059–2064 (1993) CrossRef
54.
go back to reference S. Forsberg, Optimization of thermodynamic properties of the K 2O–SiO 2 system at high temperatures. J. Phase Equilib. 23(3), 211–217 (2002) CrossRef S. Forsberg, Optimization of thermodynamic properties of the K 2O–SiO 2 system at high temperatures. J. Phase Equilib. 23(3), 211–217 (2002) CrossRef
55.
go back to reference E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 1: Alkali oxide-silica systems. Calphad 30(3), 270–276 (2006) CrossRef E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 1: Alkali oxide-silica systems. Calphad 30(3), 270–276 (2006) CrossRef
56.
go back to reference G. Eriksson et al., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO–SiO 2 and CaO–SiO 2 systems. Can. Metall. Q. 33(1), 13–21 (1994) CrossRef G. Eriksson et al., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO–SiO 2 and CaO–SiO 2 systems. Can. Metall. Q. 33(1), 13–21 (1994) CrossRef
57.
go back to reference G.W. Morey, F.C. Kracek, N.L. Bowen, The ternary system potassium oxide, calcium oxide, silica. J. Soc. Glass Technol. 14, 149–87T (1930) G.W. Morey, F.C. Kracek, N.L. Bowen, The ternary system potassium oxide, calcium oxide, silica. J. Soc. Glass Technol. 14, 149–87T (1930)
58.
go back to reference J. Berjonneau et al., Determination of the liquidus temperatures of ashes from the biomass gazification for fuel production by thermodynamical and experimental approaches. Energy Fuels 23(12), 6231–6241 (2009) CrossRef J. Berjonneau et al., Determination of the liquidus temperatures of ashes from the biomass gazification for fuel production by thermodynamical and experimental approaches. Energy Fuels 23(12), 6231–6241 (2009) CrossRef
59.
go back to reference P. Chartrand, A.D. Pelton, Modeling the charge compensation effect in silica-rich Na 2O–K 2O–Al 2O 3–SiO 2 melts. Calphad 23(2), 219–230 (1999) CrossRef P. Chartrand, A.D. Pelton, Modeling the charge compensation effect in silica-rich Na 2O–K 2O–Al 2O 3–SiO 2 melts. Calphad 23(2), 219–230 (1999) CrossRef
60.
go back to reference P. Chartrand, A.D. Pelton, On the choice of “geometric” thermodynamic models. J. Phase Equilib. 21(2), 141–147 (2000) CrossRef P. Chartrand, A.D. Pelton, On the choice of “geometric” thermodynamic models. J. Phase Equilib. 21(2), 141–147 (2000) CrossRef
61.
go back to reference E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide-alumina systems. Calphad 30(4), 397–404 (2006) CrossRef E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide-alumina systems. Calphad 30(4), 397–404 (2006) CrossRef
62.
go back to reference E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, Part 4: Sodium oxide-potassium oxide-silica. Calphad 32(3), 506–513 (2008) CrossRef E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, Part 4: Sodium oxide-potassium oxide-silica. Calphad 32(3), 506–513 (2008) CrossRef
63.
go back to reference E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 3: Silica-alumina system. Calphad 32(1), 195–205 (2008) CrossRef E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 3: Silica-alumina system. Calphad 32(1), 195–205 (2008) CrossRef
64.
go back to reference L. Pejryd, M. Hupa, in Bed and furnace gas composition in recovery boilers—advanced equilibrium calculations. TAPPI Pulping conference (1984) L. Pejryd, M. Hupa, in Bed and furnace gas composition in recovery boilers—advanced equilibrium calculations. TAPPI Pulping conference (1984)
65.
go back to reference B.-J. Skrifvars et al., Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature. Corros. Sci. 50(5), 1274–1282 (2008) CrossRef B.-J. Skrifvars et al., Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature. Corros. Sci. 50(5), 1274–1282 (2008) CrossRef
66.
go back to reference R. Backman et al., Formation of sulfur-rich melt near the floor tubing of kraft recovery boilers. Tappi J. 1(2), 15–20 (2002) R. Backman et al., Formation of sulfur-rich melt near the floor tubing of kraft recovery boilers. Tappi J. 1(2), 15–20 (2002)
67.
go back to reference R. Backman, M. Hupa, E. Uppstu, Fouling and corrosion mechanisms in the recovery boiler superheater area. Tappi J. 70, 123–127 (1987) R. Backman, M. Hupa, E. Uppstu, Fouling and corrosion mechanisms in the recovery boiler superheater area. Tappi J. 70, 123–127 (1987)
68.
go back to reference H.N. Tran et al., The sticky temperature of recovery boiler fireside deposits. Results confirm that a sticky particle must contain at least 15% liquid phase. Pulp Pap. Can. 103(9), 29–33 (2002) H.N. Tran et al., The sticky temperature of recovery boiler fireside deposits. Results confirm that a sticky particle must contain at least 15% liquid phase. Pulp Pap. Can. 103(9), 29–33 (2002)
69.
go back to reference R. Backman, M. Hupa, B.-J. Skrifvars, in Predicting Superheater Deposit Formation in Boilers Burning Biomasses. Impact of Mineral Impurities in Solid Fuel Combustion (1999), 405–416 R. Backman, M. Hupa, B.-J. Skrifvars, in Predicting Superheater Deposit Formation in Boilers Burning Biomasses. Impact of Mineral Impurities in Solid Fuel Combustion (1999), 405–416
70.
go back to reference C. Mueller et al., Ash deposition prediction in biomass fired fluidised bed boilers—combination of CFD and advanced fuel analysis. Prog. Comput. Fluid Dyn. 3(2/3/4), 112–120 (2003) C. Mueller et al., Ash deposition prediction in biomass fired fluidised bed boilers—combination of CFD and advanced fuel analysis. Prog. Comput. Fluid Dyn. 3(2/3/4), 112–120 (2003)
Metadata
Title
The Thermodynamics of Slag Forming Inorganic Phases in Biomass Combustion Processes
Authors
Daniel K. Lindberg
Fiseha Tesfaye
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52192-3_3