Skip to main content
Top

2024 | OriginalPaper | Chapter

The Two Dimensional Lorentz Gas in the Kinetic Limit: Theoretical and Numerical Results

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Lorentz gas is a model for the motion of electrons in a metal, where the motion is dominated by collisions of the electrons with immobile atomic nuclei, the scatterers. The motion depends on the distribution of scatterers, and we focus here on modifications of periodic scatterer distributions in two dimensions, and in the low density, or Boltzmann Grad, limit. Some theoretical results are complemented with numerical illustrations including modified periodic scatterer distributions, and scatterer distributions given by a quasi-crystal and by the zero set of a Gaussian analytic function.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This observation is due to an anonymous referee to [35].
 
Literature
1.
go back to reference Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algo. 23(2–3), 127–173 (2000) Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algo. 23(2–3), 127–173 (2000)
2.
go back to reference Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm dedicated to prof. Dario A. Bini’s mother. J. Comput. Appl. Math. 272, 276–292 (2014) Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm dedicated to prof. Dario A. Bini’s mother. J. Comput. Appl. Math. 272, 276–292 (2014)
3.
go back to reference Boldrighini, C., Bunimovich, L.A., Sinaĭ, Ya.. G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32(3), 477–501 (1983) Boldrighini, C., Bunimovich, L.A., Sinaĭ, Ya.. G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32(3), 477–501 (1983)
4.
go back to reference Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190(3), 491–508 (1998) Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190(3), 491–508 (1998)
5.
go back to reference Bunimovich, L.A., Sinaĭ, Y.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78(2), 247–280 (1980/81) Bunimovich, L.A., Sinaĭ, Y.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78(2), 247–280 (1980/81)
6.
go back to reference Bunimovich, L.A., Sinaĭ, Y.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78(4), 479–497 (1980/81) Bunimovich, L.A., Sinaĭ, Y.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78(4), 479–497 (1980/81)
7.
go back to reference Caglioti, E., Pulvirenti, M., Ricci, V.: Derivation of a linear Boltzmann equation for a lattice gas. Markov Process. Related Fields 6(3), 265–285 (2000) Caglioti, E., Pulvirenti, M., Ricci, V.: Derivation of a linear Boltzmann equation for a lattice gas. Markov Process. Related Fields 6(3), 265–285 (2000)
8.
go back to reference Caglioti, E., Golse, F.: The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions. C. R. Acad. Sci. Paris, Ser. I 346, 477–482 (2008) Caglioti, E., Golse, F.: The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions. C. R. Acad. Sci. Paris, Ser. I 346, 477–482 (2008)
9.
go back to reference Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141(2), 264–317 (2010) Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141(2), 264–317 (2010)
10.
go back to reference Chernov, N., Markarian, R.: Chaotic billiards. Mathematical Surveys and Monographs, vol. 127. American Mathematical Society, Providence, RI (2006) Chernov, N., Markarian, R.: Chaotic billiards. Mathematical Surveys and Monographs, vol. 127. American Mathematical Society, Providence, RI (2006)
11.
go back to reference Drude, P.: Zur elektronentheorie der metalle. Annalen der Physik 306(3), 566–613 (1900)CrossRef Drude, P.: Zur elektronentheorie der metalle. Annalen der Physik 306(3), 566–613 (1900)CrossRef
12.
go back to reference Fang, F., Hammock, D., Irwin, K.: Methods for calculating empires in quasicrystals. Crystals 7(10), 304, 10 (2017) Fang, F., Hammock, D., Irwin, K.: Methods for calculating empires in quasicrystals. Crystals 7(10), 304, 10 (2017)
13.
go back to reference Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna, Istituto di Fisica, Università di Roma, (358) (1972) Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna, Istituto di Fisica, Università di Roma, (358) (1972)
14.
go back to reference Gallavotti, G.: Statistical Mechanics. Texts and Monographs in Physics. Springer, Berlin (1999). A short treatise Gallavotti, G.: Statistical Mechanics. Texts and Monographs in Physics. Springer, Berlin (1999). A short treatise
15.
go back to reference Golse, F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci. Toulouse Math. (6) 17(4), 735–749 (2008) Golse, F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci. Toulouse Math. (6) 17(4), 735–749 (2008)
16.
go back to reference Ben Hough, J., Krishnapur, M., Peres, Y.l., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009) Ben Hough, J., Krishnapur, M., Peres, Y.l., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)
18.
go back to reference Lorentz, H.: Le mouvement des électrons dans les méteaux. Arch. Néerl. 10, 336–371 (1905) Lorentz, H.: Le mouvement des électrons dans les méteaux. Arch. Néerl. 10, 336–371 (1905)
19.
go back to reference Lutsko, C., Tóth, B.: Invariance principle for the random Lorentz gas–beyond the Boltzmann-Grad limit. Commun. Math. Phys. 379(2), 589–632 (2020) Lutsko, C., Tóth, B.: Invariance principle for the random Lorentz gas–beyond the Boltzmann-Grad limit. Commun. Math. Phys. 379(2), 589–632 (2020)
20.
go back to reference Marklof, J., Strömbergsson, A.: Kinetic transport in the two-dimensional periodic Lorentz gas. Nonlinearity 21(7), 1413–1422 (2008) Marklof, J., Strömbergsson, A.: Kinetic transport in the two-dimensional periodic Lorentz gas. Nonlinearity 21(7), 1413–1422 (2008)
21.
go back to reference Marklof, J., Strömbergsson, A.: The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. Math. (2) 172(3), 1949–2033 (2010) Marklof, J., Strömbergsson, A.: The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. Math. (2) 172(3), 1949–2033 (2010)
22.
go back to reference Marklof, J., Strömbergsson, A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. (2) 174(1), 225–298 (2011) Marklof, J., Strömbergsson, A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. (2) 174(1), 225–298 (2011)
23.
go back to reference Marklof, J., Strömbergsson, A.: The periodic Lorentz gas in the Boltzmann-Grad limit: asymptotic estimates. Geom. Funct. Anal. 21(3), 560–647 (2011) Marklof, J., Strömbergsson, A.: The periodic Lorentz gas in the Boltzmann-Grad limit: asymptotic estimates. Geom. Funct. Anal. 21(3), 560–647 (2011)
24.
go back to reference Marklof, J., Strömbergsson, A.: Free path lengths in quasicrystals. Commun. Math. Phys. 330(2), 723–755 (2014) Marklof, J., Strömbergsson, A.: Free path lengths in quasicrystals. Commun. Math. Phys. 330(2), 723–755 (2014)
25.
go back to reference Marklof, J., Strömbergsson, A.: Generalized linear Boltzmann equations for particle transport in polycrystals. Appl. Math. Res. Express. AMRX 2, 274–295 (2015) Marklof, J., Strömbergsson, A.: Generalized linear Boltzmann equations for particle transport in polycrystals. Appl. Math. Res. Express. AMRX 2, 274–295 (2015)
26.
go back to reference Marklof, J., Strömbergsson, A.: Kinetic theory for the low-density Lorentz gas. Mem. Amer. Math. Soc. 294 (1464) (2024) Marklof, J., Strömbergsson, A.: Kinetic theory for the low-density Lorentz gas. Mem. Amer. Math. Soc. 294 (1464) (2024)
27.
go back to reference Markof, J., Vinogradov, I.: Spherical averages in the space of marked lattices. Geom. Dedicata 186, 75–102 (2017) Markof, J., Vinogradov, I.: Spherical averages in the space of marked lattices. Geom. Dedicata 186, 75–102 (2017)
28.
go back to reference Melbourne, I., Pène, F., Terhesiu, D.: Local large deviations for periodic infinite horizon Lorentz gases (2021) Melbourne, I., Pène, F., Terhesiu, D.: Local large deviations for periodic infinite horizon Lorentz gases (2021)
29.
go back to reference Mendoza Sosa, A.R., Kraemer, A.S.: Efficient algorithm for simulating particles in true quasiperiodic environments. J. Phys. A: Math. Theor. 55(24) (2022) Mendoza Sosa, A.R., Kraemer, A.S.: Efficient algorithm for simulating particles in true quasiperiodic environments. J. Phys. A: Math. Theor. 55(24) (2022)
30.
go back to reference Pène, F., Terhesiu, D.: Sharp error term in local limit theorems and mixing for Lorentz gases with infinite horizon. Commun. Math. Phys. 382(3), 1625–1689, 2 (2021) Pène, F., Terhesiu, D.: Sharp error term in local limit theorems and mixing for Lorentz gases with infinite horizon. Commun. Math. Phys. 382(3), 1625–1689, 2 (2021)
31.
go back to reference Ricci, V., Wennberg, B.: On the derivation of a linear Boltzmann equation from a periodic lattice gas. Stochastic Process. Appl. 111(2), 281–315 (2004) Ricci, V., Wennberg, B.: On the derivation of a linear Boltzmann equation from a periodic lattice gas. Stochastic Process. Appl. 111(2), 281–315 (2004)
32.
go back to reference Senechal, M.: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1995) Senechal, M.: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1995)
33.
go back to reference Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60(3), 277–290 (1978) Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60(3), 277–290 (1978)
34.
go back to reference Wennberg, B.: Free path lengths in quasi crystals. J. Stat. Phys. 147(5), 981–990 (2012) Wennberg, B.: Free path lengths in quasi crystals. J. Stat. Phys. 147(5), 981–990 (2012)
35.
go back to reference Wennberg, B.:. The Lorentz process with a nearly periodic distribution of scatterers. J. Stat. Phys. 190(7): Paper No 127 (2023) Wennberg, B.:. The Lorentz process with a nearly periodic distribution of scatterers. J. Stat. Phys. 190(7): Paper No 127 (2023)
Metadata
Title
The Two Dimensional Lorentz Gas in the Kinetic Limit: Theoretical and Numerical Results
Author
Bernt Wennberg
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_17

Premium Partner