Skip to main content
Top

2018 | OriginalPaper | Chapter

4. The Use of Photo-Activatable Materials for the Study of Cell Biomechanics and Mechanobiology

Authors : Michelle E. Pede, James H. Henderson

Published in: Polymer and Photonic Materials Towards Biomedical Breakthroughs

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In biomechanical and mechanobiological applications, the ability of photo-activatable materials to change properties in response to a light (photo) stimulus offers key potential advantages over other activatable materials. Not only can photo-activatable materials be used in close contact or proximity to cells and tissues without the cells or tissues being affected by the photostimulus, but photo-activatable materials also offer a level of spatiotemporal control unavailable with many other forms of smart material triggering, such as ambient heating or hydration. This chapter will give an overview of photo-activatable materials that have been developed to study cell biomechanics and mechanobiology and discuss future potential applications for these promising materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.-H. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11, 203–233 (2009)CrossRef D.-H. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11, 203–233 (2009)CrossRef
2.
go back to reference J. Wolff, Das Gesetz Der Transformation Der Knochen (A. Hirschwald, Berlin, 1891) J. Wolff, Das Gesetz Der Transformation Der Knochen (A. Hirschwald, Berlin, 1891)
3.
go back to reference J.M. Mitchison, M.M. Swann, The mechanical properties of the cell surface. J. Exp. Biol. 32, 734–750 (1954) J.M. Mitchison, M.M. Swann, The mechanical properties of the cell surface. J. Exp. Biol. 32, 734–750 (1954)
4.
go back to reference R.M. Hochmuth, Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)CrossRef R.M. Hochmuth, Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)CrossRef
5.
go back to reference K.L. Sung, M.K. Kwan, F. Maldonado, W.H. Akeson, Adhesion strength of human ligament fibroblasts. J. Biomech. Eng. 116, 237–242 (1994)CrossRef K.L. Sung, M.K. Kwan, F. Maldonado, W.H. Akeson, Adhesion strength of human ligament fibroblasts. J. Biomech. Eng. 116, 237–242 (1994)CrossRef
6.
go back to reference M. Radmacher, Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16, 47–57 (1997)CrossRef M. Radmacher, Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16, 47–57 (1997)CrossRef
7.
go back to reference H. Haga et al., Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258 (2000)CrossRef H. Haga et al., Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258 (2000)CrossRef
8.
go back to reference Y.J. Kim et al., A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces. J. Biomater. Sci. Polym. Ed. 14, 1311–1321 (2003)CrossRef Y.J. Kim et al., A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces. J. Biomater. Sci. Polym. Ed. 14, 1311–1321 (2003)CrossRef
9.
go back to reference O. Thoumine, P. Kocian, A. Kottelat, J. Meister, Short-term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29, 398–408 (2000)CrossRef O. Thoumine, P. Kocian, A. Kottelat, J. Meister, Short-term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29, 398–408 (2000)CrossRef
10.
go back to reference R.L.Y. Sah et al., Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636 (1989)CrossRef R.L.Y. Sah et al., Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636 (1989)CrossRef
11.
go back to reference S. Noria et al., Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am. J. Pathol. 164, 1211–1223 (2004)CrossRef S. Noria et al., Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am. J. Pathol. 164, 1211–1223 (2004)CrossRef
12.
go back to reference R. Yoshida et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374, 240–242 (1995)CrossRef R. Yoshida et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374, 240–242 (1995)CrossRef
13.
go back to reference S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: synthesis, properties and applications. Soft Matter 4, 435 (2008)CrossRef S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: synthesis, properties and applications. Soft Matter 4, 435 (2008)CrossRef
14.
go back to reference X. Yin, A.S. Hoffman, P.S. Stayton, Poly( N-isopropylacrylamide- co -propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7, 1381–1385 (2006)CrossRef X. Yin, A.S. Hoffman, P.S. Stayton, Poly( N-isopropylacrylamide- co -propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7, 1381–1385 (2006)CrossRef
15.
go back to reference Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)CrossRef Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)CrossRef
16.
go back to reference S. Tasoglu et al., Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 5, 4702 (2014)CrossRef S. Tasoglu et al., Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 5, 4702 (2014)CrossRef
17.
go back to reference B. Yang, W.M. Huang, C. Li, L. Li, Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer (Guildf). 47, 1348–1356 (2006)CrossRef B. Yang, W.M. Huang, C. Li, L. Li, Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer (Guildf). 47, 1348–1356 (2006)CrossRef
18.
go back to reference H. Yamaguchi et al., Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603 (2012)CrossRef H. Yamaguchi et al., Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603 (2012)CrossRef
19.
go back to reference A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRef A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRef
20.
go back to reference A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemcial properties. Science 324, 59–63 (2009)CrossRef A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemcial properties. Science 324, 59–63 (2009)CrossRef
21.
go back to reference J. Nakanishi et al., Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes. J. Am. Chem. Soc. 126, 16314–16315 (2004)CrossRef J. Nakanishi et al., Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes. J. Am. Chem. Soc. 126, 16314–16315 (2004)CrossRef
22.
go back to reference A.M. Kloxin, M.W. Tibbitt, A.M. Kasko, J.A. Fairbairn, K.S. Anseth, Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 61–66 (2010)CrossRef A.M. Kloxin, M.W. Tibbitt, A.M. Kasko, J.A. Fairbairn, K.S. Anseth, Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 61–66 (2010)CrossRef
23.
go back to reference S.J. Bryant, C.R. Nuttleman, K.S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000)CrossRef S.J. Bryant, C.R. Nuttleman, K.S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000)CrossRef
24.
go back to reference Biomaterials Science: An Introduction to Materials and Medicine. (Elsevier Academic Press, New York, 2004) Biomaterials Science: An Introduction to Materials and Medicine. (Elsevier Academic Press, New York, 2004)
25.
go back to reference K. Han, W.-N. Yin, J.-X. Fan, F.-Y. Cao, X.-Z. Zhang, Photo-activatable substrates for site-specific differentiation of stem cells. ACS Appl. Mater. Interfaces 7, 23679–23684 (2015)CrossRef K. Han, W.-N. Yin, J.-X. Fan, F.-Y. Cao, X.-Z. Zhang, Photo-activatable substrates for site-specific differentiation of stem cells. ACS Appl. Mater. Interfaces 7, 23679–23684 (2015)CrossRef
26.
go back to reference Y.-H. Gong et al., Photoresponsive ‘smart template’ via host-guest interaction for reversible cell adhesion. Macromolecules 44, 7499–7502 (2011)CrossRef Y.-H. Gong et al., Photoresponsive ‘smart template’ via host-guest interaction for reversible cell adhesion. Macromolecules 44, 7499–7502 (2011)CrossRef
27.
go back to reference D. Liu, Y. Xie, H. Shao, X. Jiang, Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem. Int. Ed. 48, 4406–4408 (2009)CrossRef D. Liu, Y. Xie, H. Shao, X. Jiang, Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem. Int. Ed. 48, 4406–4408 (2009)CrossRef
28.
go back to reference I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRef I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRef
29.
go back to reference G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)CrossRef G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)CrossRef
30.
go back to reference M.T. Frey, Y. Wang, A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5, 1918–1924 (2009)CrossRef M.T. Frey, Y. Wang, A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5, 1918–1924 (2009)CrossRef
31.
go back to reference A.M. Rosales, K.M. Mabry, E.M. Nehls, K.S. Anseth, Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRef A.M. Rosales, K.M. Mabry, E.M. Nehls, K.S. Anseth, Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRef
32.
go back to reference M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)CrossRef M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)CrossRef
33.
go back to reference M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRef M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRef
34.
go back to reference C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543 (2007)CrossRef C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543 (2007)CrossRef
35.
go back to reference P.T. Mather, X. Luo, I.A. Rousseau, Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)CrossRef P.T. Mather, X. Luo, I.A. Rousseau, Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)CrossRef
36.
go back to reference A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)CrossRef A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)CrossRef
37.
go back to reference W. Small IV, P. Singhal, T.S. Wilson, D.J. Maitland, Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20, 3356–3366 (2010)CrossRef W. Small IV, P. Singhal, T.S. Wilson, D.J. Maitland, Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20, 3356–3366 (2010)CrossRef
39.
go back to reference R.M. Baker, J.H. Henderson, P.T. Mather, Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916–4920 (2013)CrossRef R.M. Baker, J.H. Henderson, P.T. Mather, Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916–4920 (2013)CrossRef
40.
go back to reference L.F. Tseng, P.T. Mather, J.H. Henderson, Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 9, 8790–8801 (2013)CrossRef L.F. Tseng, P.T. Mather, J.H. Henderson, Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 9, 8790–8801 (2013)CrossRef
41.
go back to reference H. Lv, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592–595 (2008)CrossRef H. Lv, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592–595 (2008)CrossRef
42.
go back to reference H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)CrossRef H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)CrossRef
43.
go back to reference N.G. Sahoo, Y.C. Jung, J.W. Cho, Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater. Manuf. Process. 22, 419–423 (2007)CrossRef N.G. Sahoo, Y.C. Jung, J.W. Cho, Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater. Manuf. Process. 22, 419–423 (2007)CrossRef
44.
go back to reference D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)CrossRef D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)CrossRef
45.
go back to reference W. Small IV, T.S. Wilson, W.J. Benett, J.M. Loge, D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)CrossRef W. Small IV, T.S. Wilson, W.J. Benett, J.M. Loge, D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)CrossRef
46.
go back to reference Q. Shou, K. Uto, M. Iwanaga, M. Ebara, T. Aoyagi, Near-infrared light-responsive shape-memory poly(ε-caprolactone) films that actuate in physiological temperature range. Polym. J. 46, 492–498 (2014)CrossRef Q. Shou, K. Uto, M. Iwanaga, M. Ebara, T. Aoyagi, Near-infrared light-responsive shape-memory poly(ε-caprolactone) films that actuate in physiological temperature range. Polym. J. 46, 492–498 (2014)CrossRef
47.
go back to reference Y. Yu, T. Ikeda, Photodeformable polymers: A new kind of promising smart material for micro- and nano-applications. Macromol. Chem. Phys. 206, 1705–1708 (2005)CrossRef Y. Yu, T. Ikeda, Photodeformable polymers: A new kind of promising smart material for micro- and nano-applications. Macromol. Chem. Phys. 206, 1705–1708 (2005)CrossRef
48.
go back to reference A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Dev. 7, 357–379 (2010)CrossRef A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Dev. 7, 357–379 (2010)CrossRef
49.
go back to reference K.A. Davis, K.A. Burke, P.T. Mather, J.H. Henderson, Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285–2293 (2011)CrossRef K.A. Davis, K.A. Burke, P.T. Mather, J.H. Henderson, Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285–2293 (2011)CrossRef
50.
go back to reference R.M. Baker, L.F. Tseng, M.T. Iannolo, M.E. Oest, J.H. Henderson, Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials 76, 388–398 (2016)CrossRef R.M. Baker, L.F. Tseng, M.T. Iannolo, M.E. Oest, J.H. Henderson, Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials 76, 388–398 (2016)CrossRef
51.
go back to reference X. Xu et al., Shape memory RGD-containing networks: Synthesis, characterization, and application in cell culture. Macromol. Symp. 309–310, 162–172 (2011)CrossRef X. Xu et al., Shape memory RGD-containing networks: Synthesis, characterization, and application in cell culture. Macromol. Symp. 309–310, 162–172 (2011)CrossRef
52.
go back to reference P. Yang, R.M. Baker, J.H. Henderson, P.T. Mather, In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter 9, 4705–4714 (2013)CrossRef P. Yang, R.M. Baker, J.H. Henderson, P.T. Mather, In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter 9, 4705–4714 (2013)CrossRef
53.
go back to reference R.M. Baker, M.E. Brasch, M.L. Manning, J.H. Henderson, Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density. J. R. Soc. Interface 11, 20140386 (2014)CrossRef R.M. Baker, M.E. Brasch, M.L. Manning, J.H. Henderson, Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density. J. R. Soc. Interface 11, 20140386 (2014)CrossRef
54.
go back to reference M. Ebara et al., Focus on the interlude between topographic transition and cell response on shape-memory surfaces. Polym. (United Kingdom) 55, 5961–5968 (2014) M. Ebara et al., Focus on the interlude between topographic transition and cell response on shape-memory surfaces. Polym. (United Kingdom) 55, 5961–5968 (2014)
55.
go back to reference T. Gong et al., The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 3, 1608–1619 (2014)CrossRef T. Gong et al., The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 3, 1608–1619 (2014)CrossRef
56.
go back to reference P.Y. Mengsteab et al., Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86, 1–10 (2016)CrossRef P.Y. Mengsteab et al., Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86, 1–10 (2016)CrossRef
57.
go back to reference S.A. Turner, J. Zhou, S.S. Sheiko, V.S. Ashby, Switchable micropatterned surface topographies mediated by reversible shape memory. ACS Appl. Mater. Interfaces 6, 8017–8021 (2014)CrossRef S.A. Turner, J. Zhou, S.S. Sheiko, V.S. Ashby, Switchable micropatterned surface topographies mediated by reversible shape memory. ACS Appl. Mater. Interfaces 6, 8017–8021 (2014)CrossRef
58.
go back to reference D.M. Le, M.A. Tycon, C.J. Fecko, V.S. Ashby, Near-infrared activation of semi-crystalline shape memory polymer nanocomposites. J. Appl. Polym. Sci. 130, 4551–4557 (2013) D.M. Le, M.A. Tycon, C.J. Fecko, V.S. Ashby, Near-infrared activation of semi-crystalline shape memory polymer nanocomposites. J. Appl. Polym. Sci. 130, 4551–4557 (2013)
59.
go back to reference Q. Shou, K. Uto, W.-C. Lin, T. Aoyagi, M. Ebara, Near-infrared-irradiation-induced remote activation of surface shape-memory to direct cell orientations. Macromol. Chem. Phys. 215, 2473–2481 (2014)CrossRef Q. Shou, K. Uto, W.-C. Lin, T. Aoyagi, M. Ebara, Near-infrared-irradiation-induced remote activation of surface shape-memory to direct cell orientations. Macromol. Chem. Phys. 215, 2473–2481 (2014)CrossRef
60.
go back to reference C.A. Goubko, S. Majumdar, A. Basak, X. Cao, Hydrogel cell patterning incorporating photocaged RGDS peptides. Biomed. Microdev. 12, 555–568 (2010)CrossRef C.A. Goubko, S. Majumdar, A. Basak, X. Cao, Hydrogel cell patterning incorporating photocaged RGDS peptides. Biomed. Microdev. 12, 555–568 (2010)CrossRef
61.
go back to reference J. Nakanishi et al., Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group. Anal. Chim. Acta 578, 100–104 (2006)CrossRef J. Nakanishi et al., Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group. Anal. Chim. Acta 578, 100–104 (2006)CrossRef
62.
go back to reference J. Nakanishi et al., Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J. Am. Chem. Soc. 129, 6694–6695 (2007)CrossRef J. Nakanishi et al., Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J. Am. Chem. Soc. 129, 6694–6695 (2007)CrossRef
63.
go back to reference J. Nakanishi, H. Nakayama, K. Yamaguchi, A.J. Garcia, Y. Horiike, Dynamic culture substrate that captures a specific extracellular matrix protein in response to light. Sci. Technol. Adv. Mater. 12, 44608 (2011)CrossRef J. Nakanishi, H. Nakayama, K. Yamaguchi, A.J. Garcia, Y. Horiike, Dynamic culture substrate that captures a specific extracellular matrix protein in response to light. Sci. Technol. Adv. Mater. 12, 44608 (2011)CrossRef
64.
go back to reference Y. Kikuchi et al., Grafting poly(ethylene glycol) to a glass surface via a photocleavable linker for light-induced cell micropatterning and cell proliferation control. Chem. Lett. 37, 1062–1063 (2008)CrossRef Y. Kikuchi et al., Grafting poly(ethylene glycol) to a glass surface via a photocleavable linker for light-induced cell micropatterning and cell proliferation control. Chem. Lett. 37, 1062–1063 (2008)CrossRef
65.
go back to reference Y. Kikuchi et al., Arraying heterotypic single cells on photoactivatable cell-culturing substrates. Langmuir 24, 13084–13095 (2008)CrossRef Y. Kikuchi et al., Arraying heterotypic single cells on photoactivatable cell-culturing substrates. Langmuir 24, 13084–13095 (2008)CrossRef
66.
go back to reference S. Kaneko et al., Photocontrol of cell adhesion on amino-bearing surfaces by reversible conjugation of poly(ethylene glycol) via a photocleavable linker. Phys. Chem. Chem. Phys. 13, 4051–4059 (2011)CrossRef S. Kaneko et al., Photocontrol of cell adhesion on amino-bearing surfaces by reversible conjugation of poly(ethylene glycol) via a photocleavable linker. Phys. Chem. Chem. Phys. 13, 4051–4059 (2011)CrossRef
67.
go back to reference M. Kamimura et al., Facile preparation of a photoactivatable surface on a 96-well plate: A versatile and multiplex cell migration assay platform. Phys. Chem. Chem. Phys. 17, 14159–14167 (2015)CrossRef M. Kamimura et al., Facile preparation of a photoactivatable surface on a 96-well plate: A versatile and multiplex cell migration assay platform. Phys. Chem. Chem. Phys. 17, 14159–14167 (2015)CrossRef
68.
go back to reference S. Petersen et al., Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 47, 3192–3195 (2008)CrossRef S. Petersen et al., Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 47, 3192–3195 (2008)CrossRef
69.
go back to reference J. Nakanishi et al., Precise patterning of photoactivatable glass coverslip for fluorescence observation of shape-controlled cells. Supramol. Chem. 22, 396–405 (2010)CrossRef J. Nakanishi et al., Precise patterning of photoactivatable glass coverslip for fluorescence observation of shape-controlled cells. Supramol. Chem. 22, 396–405 (2010)CrossRef
71.
go back to reference Y. Ohmuro-Matsuyama, Y. Tatsu, Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008)CrossRef Y. Ohmuro-Matsuyama, Y. Tatsu, Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008)CrossRef
72.
go back to reference M.D. Pierschbacher, E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)CrossRef M.D. Pierschbacher, E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)CrossRef
73.
go back to reference G.S. Nowakowski et al., A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22, 1030–1038 (2004)CrossRef G.S. Nowakowski et al., A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22, 1030–1038 (2004)CrossRef
74.
go back to reference F.-Y. Cao, W.-N. Yin, J.-X. Fan, R.-X. Zhuo, X.-Z. Zhang, A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 3, 345–351 (2015)CrossRef F.-Y. Cao, W.-N. Yin, J.-X. Fan, R.-X. Zhuo, X.-Z. Zhang, A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 3, 345–351 (2015)CrossRef
75.
go back to reference M.W. Tibbitt, A.M. Kloxin, K.U. Dyamenahalli, K.S. Anseth, Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6, 5100 (2010)CrossRef M.W. Tibbitt, A.M. Kloxin, K.U. Dyamenahalli, K.S. Anseth, Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6, 5100 (2010)CrossRef
76.
go back to reference B. Wildt, D. Wirtz, P.C. Searson, Programmed subcellular release for studying the dynamics of cell detachment. Nat. Methods 6, 211–213 (2009)CrossRef B. Wildt, D. Wirtz, P.C. Searson, Programmed subcellular release for studying the dynamics of cell detachment. Nat. Methods 6, 211–213 (2009)CrossRef
77.
go back to reference A.J. Ridley et al., Cell migration: Integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRef A.J. Ridley et al., Cell migration: Integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRef
78.
go back to reference P. Friedl, B. Weigelin, Interstitial leukocyte migration and immune function. Nat. Immunol. 9, 960–969 (2008)CrossRef P. Friedl, B. Weigelin, Interstitial leukocyte migration and immune function. Nat. Immunol. 9, 960–969 (2008)CrossRef
79.
go back to reference P.L. Ryan, R.A. Foty, J. Kohn, M.S. Steinberg, Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc. Natl. Acad. Sci. 98, 4323–4327 (2001)CrossRef P.L. Ryan, R.A. Foty, J. Kohn, M.S. Steinberg, Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc. Natl. Acad. Sci. 98, 4323–4327 (2001)CrossRef
80.
go back to reference J. Bourget, M. Guillemette, T. Veres, F.A. Auger, L. Germain, Alignment of cells and extracellular matrix within tissue-engineered substitutes. Adv. Biomater. Sci. Biomed. Appl. Ref., 365–390 (2013). https://doi.org/10.5772/54142 J. Bourget, M. Guillemette, T. Veres, F.A. Auger, L. Germain, Alignment of cells and extracellular matrix within tissue-engineered substitutes. Adv. Biomater. Sci. Biomed. Appl. Ref., 365–390 (2013). https://​doi.​org/​10.​5772/​54142
81.
go back to reference C.M. Kirschner, D.L. Alge, S.T. Gould, K.S. Anseth, Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater. 3, 649–657 (2014)CrossRef C.M. Kirschner, D.L. Alge, S.T. Gould, K.S. Anseth, Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater. 3, 649–657 (2014)CrossRef
82.
go back to reference F. Guilak et al., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)CrossRef F. Guilak et al., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)CrossRef
83.
go back to reference S. Tavella et al., Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation. J. Cell Sci. 110, 2261–2270 (1997) S. Tavella et al., Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation. J. Cell Sci. 110, 2261–2270 (1997)
84.
go back to reference A.M. Kloxin, J.A. Benton, K.S. Anseth, In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31, 1–8 (2010)CrossRef A.M. Kloxin, J.A. Benton, K.S. Anseth, In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31, 1–8 (2010)CrossRef
85.
go back to reference H. Wang, S.M. Haeger, A.M. Kloxin, L.A. Leinwand, K.S. Anseth, Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 7 (2012) H. Wang, S.M. Haeger, A.M. Kloxin, L.A. Leinwand, K.S. Anseth, Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 7 (2012)
86.
go back to reference C. Yang, M.W. Tibbitt, L. Basta, K.S. Anseth, Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014)CrossRef C. Yang, M.W. Tibbitt, L. Basta, K.S. Anseth, Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014)CrossRef
87.
go back to reference S. Dupont et al., Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011)CrossRef S. Dupont et al., Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011)CrossRef
88.
go back to reference G. Halder, S. Dupont, S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Publ. Gr. 13, 591–600 (2012) G. Halder, S. Dupont, S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Publ. Gr. 13, 591–600 (2012)
89.
go back to reference M.J. Salierno, A.J. Garcia, A. Del Campo, Photo-activatable surfaces for cell migration assays. Adv. Funct. Mater. 23, 5974–5980 (2013)CrossRef M.J. Salierno, A.J. Garcia, A. Del Campo, Photo-activatable surfaces for cell migration assays. Adv. Funct. Mater. 23, 5974–5980 (2013)CrossRef
90.
go back to reference R.M. Pope, E.S. Fry, Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurement. Appl. Opt. 36, 8710–8723 (1997)CrossRef R.M. Pope, E.S. Fry, Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurement. Appl. Opt. 36, 8710–8723 (1997)CrossRef
91.
go back to reference H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)CrossRef H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)CrossRef
Metadata
Title
The Use of Photo-Activatable Materials for the Study of Cell Biomechanics and Mechanobiology
Authors
Michelle E. Pede
James H. Henderson
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-75801-5_4