Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

29-03-2022 | Technical Article

The Wet–Dry Cycling Corrosion Behavior of Low-Carbon Medium Manganese Steel Exposed to a 3.5% NaCl Solution Environment

Authors: Guanqiao Su, Cansheng Yu, Haoqing Zheng, Xiuhua Gao, Haibo Xie, Mingshuai Huo, Hui Wu, Jianzhong Xu, Linxiu Du, Zhengyi Jiang

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work utilizes wet–dry cycle corrosion tests to investigate the corrosion behavior of medium manganese steel by analyzing its corrosion kinetics, corrosion phases, surface morphology, cross-section morphology, elemental distribution and electrochemical characteristics. The corrosion process was divided into two stages, and the change is due to the unique transformation of corrosion products. The mixture of β-FeOOH and MnO2 in the corrosion product up to 72 h causes an increase in redox ability and electronic transmission rate and enlarges the specific surface in the initial corrosion products. The transformation of the unique mixture determines the transformation of the corrosion process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater. Sci., 2018, 94, p 174–242. (in English)CrossRef J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater. Sci., 2018, 94, p 174–242. (in English)CrossRef
2.
go back to reference J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104, p 87–90. (in English)CrossRef J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104, p 87–90. (in English)CrossRef
3.
go back to reference H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong, Experimental and Numerical Analysis on Formation of Stable Austenite During the Intercritical Annealing of 5Mn Steel, Acta Mater., 2011, 59(10), p 4002–4014. (in English)CrossRef H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong, Experimental and Numerical Analysis on Formation of Stable Austenite During the Intercritical Annealing of 5Mn Steel, Acta Mater., 2011, 59(10), p 4002–4014. (in English)CrossRef
4.
go back to reference Y.-K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31(7), p 843–856. (in English)CrossRef Y.-K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31(7), p 843–856. (in English)CrossRef
5.
go back to reference Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, and J.W. Yan, An Introduction to Medium-Mn Steel: Metallurgy, Mechanical Properties and Warm Stamping Process, Mater. Des., 2016, 94, p 424–432. (in English)CrossRef Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, and J.W. Yan, An Introduction to Medium-Mn Steel: Metallurgy, Mechanical Properties and Warm Stamping Process, Mater. Des., 2016, 94, p 424–432. (in English)CrossRef
6.
go back to reference J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, The Effects of the Initial Martensite Microstructure on the Microstructure and Tensile Properties of Intercritically Annealed Fe-9Mn-0.05C Steel, Acta Mater., 2014, 78, p 369–377. (in English)CrossRef J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, The Effects of the Initial Martensite Microstructure on the Microstructure and Tensile Properties of Intercritically Annealed Fe-9Mn-0.05C Steel, Acta Mater., 2014, 78, p 369–377. (in English)CrossRef
7.
go back to reference J. Hu, L.X. Du, Y. Dong, Q.W. Meng, and R.D.K. Misra, Effect of Ti Variation on Microstructure Evolution and Mechanical Properties of Low Carbon Medium Mn Heavy Plate Steel, Mater. Character., 2019, 152, p 21–35. (in English)CrossRef J. Hu, L.X. Du, Y. Dong, Q.W. Meng, and R.D.K. Misra, Effect of Ti Variation on Microstructure Evolution and Mechanical Properties of Low Carbon Medium Mn Heavy Plate Steel, Mater. Character., 2019, 152, p 21–35. (in English)CrossRef
8.
go back to reference G. Su, X. Gao, D. Zhang, C. Cui, L. Du, C. Yu, J. Hu, and Z. Liu, Offset Effect of Chromium on the Adverse Impact of Manganese in a Low-C Medium-Mn Steel with Reversed Austenite in the Neutral Salt Spray Condition, Corrosion, 2017, 73(11), p 1367–1380. (in English)CrossRef G. Su, X. Gao, D. Zhang, C. Cui, L. Du, C. Yu, J. Hu, and Z. Liu, Offset Effect of Chromium on the Adverse Impact of Manganese in a Low-C Medium-Mn Steel with Reversed Austenite in the Neutral Salt Spray Condition, Corrosion, 2017, 73(11), p 1367–1380. (in English)CrossRef
9.
go back to reference G. Su and X.H. Gao, Comparison of Medium Manganese Steel and Q345 Steel on Corrosion Behavior in a 3.5 wt % NaCl Solution, Materials, 2017, 10(8), p 938. (in English)CrossRef G. Su and X.H. Gao, Comparison of Medium Manganese Steel and Q345 Steel on Corrosion Behavior in a 3.5 wt % NaCl Solution, Materials, 2017, 10(8), p 938. (in English)CrossRef
10.
go back to reference W.J. Beom, K.S. Yun, C.J. Park, H.J. Ryu, and Y.H. Kim, Comparison of Influences of NaCl and CaCl2 on the Corrosion of 11% and 17% Cr Ferritic Stainless Steels During Cyclic Corrosion Test, Corros. Sci., 2010, 52(3), p 734–739. (in English)CrossRef W.J. Beom, K.S. Yun, C.J. Park, H.J. Ryu, and Y.H. Kim, Comparison of Influences of NaCl and CaCl2 on the Corrosion of 11% and 17% Cr Ferritic Stainless Steels During Cyclic Corrosion Test, Corros. Sci., 2010, 52(3), p 734–739. (in English)CrossRef
11.
go back to reference S.I. Komazaki, K. Kobayashi, T. Misawa, and T. Fukuzumi, Environmental Embrittlement of Automobile Spring Steels Caused by Wet-Dry Cyclic Corrosion in Sodium Chloride Solution, Corros. Sci., 2005, 47(10), p 2450–2460. (in English)CrossRef S.I. Komazaki, K. Kobayashi, T. Misawa, and T. Fukuzumi, Environmental Embrittlement of Automobile Spring Steels Caused by Wet-Dry Cyclic Corrosion in Sodium Chloride Solution, Corros. Sci., 2005, 47(10), p 2450–2460. (in English)CrossRef
12.
go back to reference K. Gong, M. Wu, and G. Liu, Stress Corrosion Cracking Behavior of Rusted X100 Steel Under the Combined Action of Cl– and HSO3– in a Wet-Dry Cycle Environment, Corros. Sci., 2020, 165, p 108382. (in English)CrossRef K. Gong, M. Wu, and G. Liu, Stress Corrosion Cracking Behavior of Rusted X100 Steel Under the Combined Action of Cl and HSO3 in a Wet-Dry Cycle Environment, Corros. Sci., 2020, 165, p 108382. (in English)CrossRef
13.
go back to reference Z.Y. Wang, F.X. Yin, L.X. Wu, Y.Q. Sun, and W.L. Zhang, Corrosion Resistance on High Strength Bainitic Steel and 09CuPCrNi After Wet-Dry Cyclic Conditions, J. Iron Steel Res. Int., 2013, 20(2), p 72–78. (in English)CrossRef Z.Y. Wang, F.X. Yin, L.X. Wu, Y.Q. Sun, and W.L. Zhang, Corrosion Resistance on High Strength Bainitic Steel and 09CuPCrNi After Wet-Dry Cyclic Conditions, J. Iron Steel Res. Int., 2013, 20(2), p 72–78. (in English)CrossRef
14.
go back to reference C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, and W. Ke, Atmospheric Corrosion Monitoring of a Weathering Steel Under an Electrolyte Film in Cyclic Wet-Dry Condition, Corros. Sci., 2014, 78, p 130–137. (in English)CrossRef C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, and W. Ke, Atmospheric Corrosion Monitoring of a Weathering Steel Under an Electrolyte Film in Cyclic Wet-Dry Condition, Corros. Sci., 2014, 78, p 130–137. (in English)CrossRef
15.
go back to reference W. Hao, Z. Liu, W. Xu, X. Li, C. Du, and D. Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-Dry Cyclic Marine Environments, Mater. Sci. Eng. A, 2018, 710, p 318–328. (in English)CrossRef W. Hao, Z. Liu, W. Xu, X. Li, C. Du, and D. Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-Dry Cyclic Marine Environments, Mater. Sci. Eng. A, 2018, 710, p 318–328. (in English)CrossRef
16.
go back to reference S. Fajardo, I. Llorente, J.A. Jiménez, J. Bastidas, and D.M. Bastidas, Effect of Mn Additions on the Corrosion Behaviour of TWIP Fe-Mn-Al-Si Austenitic Steel in Chloride Solution, Corros. Sci., 2019, 154, p 246–253. (in English)CrossRef S. Fajardo, I. Llorente, J.A. Jiménez, J. Bastidas, and D.M. Bastidas, Effect of Mn Additions on the Corrosion Behaviour of TWIP Fe-Mn-Al-Si Austenitic Steel in Chloride Solution, Corros. Sci., 2019, 154, p 246–253. (in English)CrossRef
17.
go back to reference K.M. Moon, D.A. Kim, Y.H. Kim, and M.H. Lee, Effect of Mn Content on Corrosion Characteristics of Lean Mn TWIP Steel, Int. J. Modern Phys. B, 2018, 32(19), p 1840083. (in English)CrossRef K.M. Moon, D.A. Kim, Y.H. Kim, and M.H. Lee, Effect of Mn Content on Corrosion Characteristics of Lean Mn TWIP Steel, Int. J. Modern Phys. B, 2018, 32(19), p 1840083. (in English)CrossRef
18.
go back to reference Z. Liu, X. Gao, L. Du, J. Li, P. Li, C. Yu, R.D.K. Misra, and Y. Wang, Comparison of Corrosion Behaviour of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Brine and Vapour-Saturated H2S/CO2 Environments, Electrochim. Acta, 2017, 232, p 528–541. (in English)CrossRef Z. Liu, X. Gao, L. Du, J. Li, P. Li, C. Yu, R.D.K. Misra, and Y. Wang, Comparison of Corrosion Behaviour of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Brine and Vapour-Saturated H2S/CO2 Environments, Electrochim. Acta, 2017, 232, p 528–541. (in English)CrossRef
19.
go back to reference B. Hu and H. Luo, A Novel Two-Step Intercritical Annealing Process to Improve Mechanical Properties of Medium Mn Steel, Acta Mater., 2019, 176, p 250–263. (in English)CrossRef B. Hu and H. Luo, A Novel Two-Step Intercritical Annealing Process to Improve Mechanical Properties of Medium Mn Steel, Acta Mater., 2019, 176, p 250–263. (in English)CrossRef
20.
go back to reference G. Su, X. Gao, T. Yan, D. Zhang, C. Cui, L. Du, Z. Liu, Y. Tang, and J. Hu, Intercritical Tempering Enables Nanoscale Austenite/ε-Martensite Formation in Low-C Medium-Mn Steel: A Pathway to Control Mechanical Properties, Mater. Sci. Eng. A, 2018, 736, p 417–430. (in English)CrossRef G. Su, X. Gao, T. Yan, D. Zhang, C. Cui, L. Du, Z. Liu, Y. Tang, and J. Hu, Intercritical Tempering Enables Nanoscale Austenite/ε-Martensite Formation in Low-C Medium-Mn Steel: A Pathway to Control Mechanical Properties, Mater. Sci. Eng. A, 2018, 736, p 417–430. (in English)CrossRef
21.
go back to reference E.J. Seo, L. Cho, and B.C. De Cooman, Application of Quenching and Partitioning (Q&P) Processing to Press Hardening Steel, Metall. Mater. Trans. A, 2014, 45(9), p 4022–4037. (in English)CrossRef E.J. Seo, L. Cho, and B.C. De Cooman, Application of Quenching and Partitioning (Q&P) Processing to Press Hardening Steel, Metall. Mater. Trans. A, 2014, 45(9), p 4022–4037. (in English)CrossRef
22.
go back to reference S.-J. Lee, D.K. Matlock, and C.J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects, ISIJ Int., 2011, 51(11), p 1903–1911. (in English)CrossRef S.-J. Lee, D.K. Matlock, and C.J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects, ISIJ Int., 2011, 51(11), p 1903–1911. (in English)CrossRef
23.
go back to reference A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Carbon Partitioning to Austenite from Martensite or Bainite During the Quench and Partition (Q&P) Process: A Critical Assessment, Acta Mater., 2008, 56(1), p 16–22. (in English)CrossRef A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Carbon Partitioning to Austenite from Martensite or Bainite During the Quench and Partition (Q&P) Process: A Critical Assessment, Acta Mater., 2008, 56(1), p 16–22. (in English)CrossRef
24.
go back to reference “Standard practice for preparing, cleaning, and evaluating corrosion test specimens,” ASTM Standard G1-03, ASTM, 2017 “Standard practice for preparing, cleaning, and evaluating corrosion test specimens,” ASTM Standard G1-03, ASTM, 2017
25.
go back to reference B. Sun, X. Zuo, X. Cheng, and X. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, npj Mater Degrad., 2020, 4, p 37. (in English)CrossRef B. Sun, X. Zuo, X. Cheng, and X. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, npj Mater Degrad., 2020, 4, p 37. (in English)CrossRef
26.
go back to reference G. Su, X. Gao, M. Huo, H. Xie, L. Du, J. Xu, and Z. Jiang, New Insights into the Corrosion Behaviour of Medium Manganese Steel Exposed to a NaCl Solution Spray, Constr. Build. Mater., 2020, 261, p 119908. (in English)CrossRef G. Su, X. Gao, M. Huo, H. Xie, L. Du, J. Xu, and Z. Jiang, New Insights into the Corrosion Behaviour of Medium Manganese Steel Exposed to a NaCl Solution Spray, Constr. Build. Mater., 2020, 261, p 119908. (in English)CrossRef
27.
go back to reference D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, and M. Morcillo, Characterisation of Rust Surfaces Formed on Mild Steel Exposed to Marine Atmospheres Using XRD and SEM/Micro-Raman Techniques, Corros. Sci., 2016, 110, p 253–264. (in English)CrossRef D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, and M. Morcillo, Characterisation of Rust Surfaces Formed on Mild Steel Exposed to Marine Atmospheres Using XRD and SEM/Micro-Raman Techniques, Corros. Sci., 2016, 110, p 253–264. (in English)CrossRef
28.
go back to reference T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48(9), p 2799–2812. (in English)CrossRef T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48(9), p 2799–2812. (in English)CrossRef
29.
go back to reference J. Yang, Y. Lu, Z. Guo, J. Gu, and C. Gu, Corrosion Behaviour of a Quenched and Partitioned Medium Carbon Steel in 3.5 wt.% NaCl Solution, Corros. Sci., 2018, 130, p 64–75. (in English)CrossRef J. Yang, Y. Lu, Z. Guo, J. Gu, and C. Gu, Corrosion Behaviour of a Quenched and Partitioned Medium Carbon Steel in 3.5 wt.% NaCl Solution, Corros. Sci., 2018, 130, p 64–75. (in English)CrossRef
30.
go back to reference I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric Corrosion of Ni-Advanced Weathering Steels in Marine Atmospheres of Moderate Salinity, Corros. Sci., 2013, 76, p 348–360. (in English)CrossRef I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric Corrosion of Ni-Advanced Weathering Steels in Marine Atmospheres of Moderate Salinity, Corros. Sci., 2013, 76, p 348–360. (in English)CrossRef
31.
go back to reference R. Silva, G.S. Vacchi, I.G.R. Santos, A.M. de Sousa Malafaia, C.L. Kugelmeier, A.A. Mendes Filho, C. Pascal, V.L. Sordi, and C.A.D. Rovere, Insights into High-Temperature Oxidation of Fe-Mn-Si-Cr-Ni Shape Memory Stainless Steels and its Relationship to Alloy Chemical Composition, Corros. Sci., 2020, 163, p 108269. (in English)CrossRef R. Silva, G.S. Vacchi, I.G.R. Santos, A.M. de Sousa Malafaia, C.L. Kugelmeier, A.A. Mendes Filho, C. Pascal, V.L. Sordi, and C.A.D. Rovere, Insights into High-Temperature Oxidation of Fe-Mn-Si-Cr-Ni Shape Memory Stainless Steels and its Relationship to Alloy Chemical Composition, Corros. Sci., 2020, 163, p 108269. (in English)CrossRef
32.
go back to reference D. Song, J. Hao, F. Yang, H. Chen, N. Liang, Y. Wu, J. Zhang, H. Ma, E.E. Klu, B. Gao, Y. Qiao, J. Sun, and J. Jiang, Corrosion Behaviour and Mechanism of Cr-Mo Alloyed Steel: Role of Ferrite/Bainite Duplex Microstructure, J. Alloy. Comp., 2019, 809, p 151787. (in English)CrossRef D. Song, J. Hao, F. Yang, H. Chen, N. Liang, Y. Wu, J. Zhang, H. Ma, E.E. Klu, B. Gao, Y. Qiao, J. Sun, and J. Jiang, Corrosion Behaviour and Mechanism of Cr-Mo Alloyed Steel: Role of Ferrite/Bainite Duplex Microstructure, J. Alloy. Comp., 2019, 809, p 151787. (in English)CrossRef
33.
go back to reference M. Sun, X. Yang, C. Du, Z. Liu, Y. Li, Y. Wu, H. San, X. Su, and X. Li, Distinct Beneficial Effect of Sn on the Corrosion Resistance of Cr-Mo Low Alloy Steel, J. Mater. Sci. Technol., 2021, 81, p 175–189. (in English)CrossRef M. Sun, X. Yang, C. Du, Z. Liu, Y. Li, Y. Wu, H. San, X. Su, and X. Li, Distinct Beneficial Effect of Sn on the Corrosion Resistance of Cr-Mo Low Alloy Steel, J. Mater. Sci. Technol., 2021, 81, p 175–189. (in English)CrossRef
34.
go back to reference Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51(5), p 997–1006. (in English)CrossRef Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51(5), p 997–1006. (in English)CrossRef
35.
go back to reference Y. Fan, W. Liu, S. Li, T. Chowwanonthapunya, B. Wongpat, Y. Zhao, B. Dong, T. Zhang, and X. Li, Evolution of Rust Layers on Carbon Steel and Weathering Steel in High Humidity and Heat Marine Atmospheric Corrosion, J. Mater. Sci. Technol., 2020, 39, p 190–199. (in English)CrossRef Y. Fan, W. Liu, S. Li, T. Chowwanonthapunya, B. Wongpat, Y. Zhao, B. Dong, T. Zhang, and X. Li, Evolution of Rust Layers on Carbon Steel and Weathering Steel in High Humidity and Heat Marine Atmospheric Corrosion, J. Mater. Sci. Technol., 2020, 39, p 190–199. (in English)CrossRef
36.
go back to reference T. Zhao, Z. Liu, C. Du, M. Sun, and X. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J. Fatigue, 2018, 110, p 105–114. (in English)CrossRef T. Zhao, Z. Liu, C. Du, M. Sun, and X. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J. Fatigue, 2018, 110, p 105–114. (in English)CrossRef
37.
go back to reference X. Zhang, S. Yang, W. Zhang, H. Guo, and X. He, Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet-Dry Cycles, Corros. Sci., 2014, 82, p 165–172. (in English)CrossRef X. Zhang, S. Yang, W. Zhang, H. Guo, and X. He, Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet-Dry Cycles, Corros. Sci., 2014, 82, p 165–172. (in English)CrossRef
38.
go back to reference R.E. Melchers, Effect on Marine Immersion Corrosion of Carbon Content of Low Alloy Steels, Corros. Sci., 2003, 45(11), p 2609–2625. (in English)CrossRef R.E. Melchers, Effect on Marine Immersion Corrosion of Carbon Content of Low Alloy Steels, Corros. Sci., 2003, 45(11), p 2609–2625. (in English)CrossRef
39.
go back to reference B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films: II. Applications, J. Electrochem. Soc., 2010, 157, p C452. (in English)CrossRef B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films: II. Applications, J. Electrochem. Soc., 2010, 157, p C452. (in English)CrossRef
40.
go back to reference G. Su, X. Gao, L. Du, D. Zhang, J. Hu, and Z. Liu, Influence of Mn on the Corrosion Behaviour of Medium Manganese Steels in a Simulated Seawater Environment, Int. J. Electrochem. Sci., 2016, 11(11), p 9447–9461. (in English)CrossRef G. Su, X. Gao, L. Du, D. Zhang, J. Hu, and Z. Liu, Influence of Mn on the Corrosion Behaviour of Medium Manganese Steels in a Simulated Seawater Environment, Int. J. Electrochem. Sci., 2016, 11(11), p 9447–9461. (in English)CrossRef
41.
go back to reference S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, N. Chen, and X.Y. Ge, Effect of Quenching and Partitioning on the Microstructure Evolution and Electrochemical Properties of a Martensitic Stainless Steel, Corros. Sci., 2016, 103, p 95–104. (in English)CrossRef S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, N. Chen, and X.Y. Ge, Effect of Quenching and Partitioning on the Microstructure Evolution and Electrochemical Properties of a Martensitic Stainless Steel, Corros. Sci., 2016, 103, p 95–104. (in English)CrossRef
42.
go back to reference S. Fajardo, D.M. Bastidas, M. Criado, and J.M. Bastidas, Electrochemical Study on the Corrosion Behaviour of a New Low-Nickel Stainless Steel in Carbonated Alkaline Solution in the Presence of Chlorides, Electrochim. Acta, 2014, 129, p 160–170. (in English)CrossRef S. Fajardo, D.M. Bastidas, M. Criado, and J.M. Bastidas, Electrochemical Study on the Corrosion Behaviour of a New Low-Nickel Stainless Steel in Carbonated Alkaline Solution in the Presence of Chlorides, Electrochim. Acta, 2014, 129, p 160–170. (in English)CrossRef
43.
go back to reference S. Chongdar, G. Gunasekaran, and P. Kumar, Corrosion Inhibition of Mild Steel by Aerobic Biofilm, Electrochim. Acta, 2005, 50(24), p 4655–4665. (in English)CrossRef S. Chongdar, G. Gunasekaran, and P. Kumar, Corrosion Inhibition of Mild Steel by Aerobic Biofilm, Electrochim. Acta, 2005, 50(24), p 4655–4665. (in English)CrossRef
44.
go back to reference K. Gong, M. Wu, and G. Liu, Comparative Study on Corrosion Behaviour of Rusted X100 Steel in Dry/Wet Cycle and Immersion Environments, Constr. Build. Mater., 2020, 235, p 117440. (in English)CrossRef K. Gong, M. Wu, and G. Liu, Comparative Study on Corrosion Behaviour of Rusted X100 Steel in Dry/Wet Cycle and Immersion Environments, Constr. Build. Mater., 2020, 235, p 117440. (in English)CrossRef
45.
go back to reference W. Wu, X. Cheng, J. Zhao, and X. Li, Benefit of the Corrosion Product Film Formed on a New Weathering Steel Containing 3% Nickel Under Marine Atmosphere in Maldives, Corros. Sci., 2020, 165, p 108416. (in English)CrossRef W. Wu, X. Cheng, J. Zhao, and X. Li, Benefit of the Corrosion Product Film Formed on a New Weathering Steel Containing 3% Nickel Under Marine Atmosphere in Maldives, Corros. Sci., 2020, 165, p 108416. (in English)CrossRef
46.
go back to reference Y. Ma, Y. Li, and F. Wang, Weatherability of 09CuPCrNi Steel in a Tropical Marine Environment, Corros. Sci., 2009, 51(8), p 1725–1732. (in English)CrossRef Y. Ma, Y. Li, and F. Wang, Weatherability of 09CuPCrNi Steel in a Tropical Marine Environment, Corros. Sci., 2009, 51(8), p 1725–1732. (in English)CrossRef
47.
go back to reference W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60(10), p 804–812. (in English)CrossRef W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60(10), p 804–812. (in English)CrossRef
48.
go back to reference F. Corvo, J. Minotas, J. Delagado, and C. Arroyave, Changes in Atmospheric Corrosion Rate Caused by Chloride Ions Depending on Rain Regime, Corros. Sci., 2005, 47(4), p 883–892. (in English)CrossRef F. Corvo, J. Minotas, J. Delagado, and C. Arroyave, Changes in Atmospheric Corrosion Rate Caused by Chloride Ions Depending on Rain Regime, Corros. Sci., 2005, 47(4), p 883–892. (in English)CrossRef
49.
go back to reference M. Stratmann, K. Bohnenkamp, and H.-J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23(9), p 969–985. (in English)CrossRef M. Stratmann, K. Bohnenkamp, and H.-J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23(9), p 969–985. (in English)CrossRef
50.
go back to reference T. Misawa, K. Hashimoto, and S. Shimodaira, The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14(2), p 131–149. (in English)CrossRef T. Misawa, K. Hashimoto, and S. Shimodaira, The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14(2), p 131–149. (in English)CrossRef
51.
go back to reference I.M. Allam, J.S. Arlow, and H. Saricimen, Initial Stages of Atmospheric Corrosion of Steel in the Arabian Gulf, Corros. Sci., 1991, 32(4), p 417–432. (in English)CrossRef I.M. Allam, J.S. Arlow, and H. Saricimen, Initial Stages of Atmospheric Corrosion of Steel in the Arabian Gulf, Corros. Sci., 1991, 32(4), p 417–432. (in English)CrossRef
52.
go back to reference A. Byström and A.M. Byström, The Crystal Structure of Hollandite, the Related Manganese Oxide Minerals, and α-MnO2, Acta Cryst., 1950, 3, p 146–154. (in English)CrossRef A. Byström and A.M. Byström, The Crystal Structure of Hollandite, the Related Manganese Oxide Minerals, and α-MnO2, Acta Cryst., 1950, 3, p 146–154. (in English)CrossRef
53.
go back to reference G.L. Elizarova, G.M. Zhidomirov, and V.N. Parmon, Hydroxides of Transition Metals as Artificial Catalysts for Oxidation of Water to Dioxygen, Catal. Today, 2000, 58(2–3), p 71–88. (in English)CrossRef G.L. Elizarova, G.M. Zhidomirov, and V.N. Parmon, Hydroxides of Transition Metals as Artificial Catalysts for Oxidation of Water to Dioxygen, Catal. Today, 2000, 58(2–3), p 71–88. (in English)CrossRef
54.
go back to reference Y. Zeng, Z. Zeng, T. Ju, and Z. Fan, Adsorption Performance and Mechanism of Perchloroethylene on a Novel Nano Composite β-FeOOH-AC, Microporous Mesoporous Mater., 2015, 210, p 60–68. (in English)CrossRef Y. Zeng, Z. Zeng, T. Ju, and Z. Fan, Adsorption Performance and Mechanism of Perchloroethylene on a Novel Nano Composite β-FeOOH-AC, Microporous Mesoporous Mater., 2015, 210, p 60–68. (in English)CrossRef
55.
go back to reference V.Y. Zenou and S. Bakardjieva, Microstructural Analysis of Undoped and Moderately Sc-Doped TiO2 Anatase Nanoparticles Using Scherrer Equation and Debye Function Analysis, Mater. Charact., 2018, 144, p 287–296. (in English)CrossRef V.Y. Zenou and S. Bakardjieva, Microstructural Analysis of Undoped and Moderately Sc-Doped TiO2 Anatase Nanoparticles Using Scherrer Equation and Debye Function Analysis, Mater. Charact., 2018, 144, p 287–296. (in English)CrossRef
56.
go back to reference C. Lyu, D. He, Z. Mou, and X. Yang, Synergetic Activation of Peroxymonosulfate by MnO2-Loaded β-FeOOH Catalyst for Enhanced Degradation of Organic Pollutant in Water, Sci. Total Environ., 2019, 693, p 133589. (in English)CrossRef C. Lyu, D. He, Z. Mou, and X. Yang, Synergetic Activation of Peroxymonosulfate by MnO2-Loaded β-FeOOH Catalyst for Enhanced Degradation of Organic Pollutant in Water, Sci. Total Environ., 2019, 693, p 133589. (in English)CrossRef
57.
go back to reference Y. Ren, L. Lin, J. Ma, J. Yang, J. Feng, and Z. Fan, Sulfate Radicals Induced from Peroxymonosulfate by Magnetic Ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as Heterogeneous Catalysts in the Water, Appl. Catal. B Environ., 2015, 165, p 572–578. (in English)CrossRef Y. Ren, L. Lin, J. Ma, J. Yang, J. Feng, and Z. Fan, Sulfate Radicals Induced from Peroxymonosulfate by Magnetic Ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as Heterogeneous Catalysts in the Water, Appl. Catal. B Environ., 2015, 165, p 572–578. (in English)CrossRef
58.
go back to reference R.K. Singh, R. Devivaraprasad, T. Kar, A. Chakraborty, and M. Neergat, Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support, J. Electrochem. Soc., 2015, 162(6), p 489–498. (in English)CrossRef R.K. Singh, R. Devivaraprasad, T. Kar, A. Chakraborty, and M. Neergat, Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support, J. Electrochem. Soc., 2015, 162(6), p 489–498. (in English)CrossRef
59.
go back to reference B. Ruiz-Camacho, J.C. Baltazar Vera, A. Medina-Ramírez, R. Fuentes-Ramírez, and G. Carreño-Aguilera, EIS Analysis of Oxygen Reduction Reaction of Pt Supported on Different Substrates, Int. J. Hydrog. Energy, 2017, 42(51), p 30364–30373. (in English)CrossRef B. Ruiz-Camacho, J.C. Baltazar Vera, A. Medina-Ramírez, R. Fuentes-Ramírez, and G. Carreño-Aguilera, EIS Analysis of Oxygen Reduction Reaction of Pt Supported on Different Substrates, Int. J. Hydrog. Energy, 2017, 42(51), p 30364–30373. (in English)CrossRef
60.
go back to reference H. Torbati-Sarraf, M. Shabani, P.D. Jablonski, G.J. Pataky, and A. Poursaee, The Influence of Incorporation of Mn on the Pitting Corrosion Performance of CrFeCoNi High Entropy Alloy at Different Temperatures, Mater. Des., 2019, 184, p 108170. (in English)CrossRef H. Torbati-Sarraf, M. Shabani, P.D. Jablonski, G.J. Pataky, and A. Poursaee, The Influence of Incorporation of Mn on the Pitting Corrosion Performance of CrFeCoNi High Entropy Alloy at Different Temperatures, Mater. Des., 2019, 184, p 108170. (in English)CrossRef
Metadata
Title
The Wet–Dry Cycling Corrosion Behavior of Low-Carbon Medium Manganese Steel Exposed to a 3.5% NaCl Solution Environment
Authors
Guanqiao Su
Cansheng Yu
Haoqing Zheng
Xiuhua Gao
Haibo Xie
Mingshuai Huo
Hui Wu
Jianzhong Xu
Linxiu Du
Zhengyi Jiang
Publication date
29-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06819-z

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners