Skip to main content
Top
Published in:

26-05-2023

Theoretical analysis of relative intensity noise in semiconductor QD lasers

Authors: Gholaam-Reza Babaabasi, Ali Mir, Mohammad-Hasan Yavari

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the relative intensity noise (RIN) and modulation response of a 1.3 μm InAs/InGaAs quantum dot (QD) laser are investigated using a rate equation model in the presence of Langevin noise sources and small-signal analysis. Results demonstrate that carrier noise in the ground state and excited states increases the amplitude of the RIN, and the RIN in QD lasers declines with an increase in injection current. Due to the decreased ambient temperature, the output power and modulation bandwidth increase, and the RIN decreases. According to the results, the maximum achievable modulation bandwidth and output power and the minimum RIN value could not be achieved at the same bias current. An optimal performance factor (OPF) can be introduced to achieve the best possible QD laser performance in terms of RIN, maximum modulation bandwidth, output power, and electrical current consumption. Despite the fact that the minimum available RIN is −150 dB/Hz and the maximum modulation bandwidth is 7.95 GHz at two different bias currents, the OPF results at the optimum point reveal a modulation bandwidth of 7.64 GHz and a minimum RIN of −140 dB/Hz with 26 mW output power at 36-mA bias current.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Eliseev, P.G., et al.: Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001)CrossRef Eliseev, P.G., et al.: Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001)CrossRef
2.
go back to reference Freisem, S., et al.: Very-low-threshold current density continuous-wave quantum-dot laser diode. Electron. Lett. 44(11), 679–681 (2008)CrossRef Freisem, S., et al.: Very-low-threshold current density continuous-wave quantum-dot laser diode. Electron. Lett. 44(11), 679–681 (2008)CrossRef
3.
go back to reference Taleb, H., Moravvej-Farshi, M.K.: Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide. Appl. Opt. 56(35), 9629–9637 (2017)CrossRef Taleb, H., Moravvej-Farshi, M.K.: Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide. Appl. Opt. 56(35), 9629–9637 (2017)CrossRef
4.
go back to reference Fathpour, S., Mi, Z., Bhattacharya, P.: Small-signal modulation characteristics of p-doped 1.1-and 1.3-μm quantum-dot lasers. IEEE Photon. Technol. Lett. 17(11), 2250–2252 (2005)CrossRef Fathpour, S., Mi, Z., Bhattacharya, P.: Small-signal modulation characteristics of p-doped 1.1-and 1.3-μm quantum-dot lasers. IEEE Photon. Technol. Lett. 17(11), 2250–2252 (2005)CrossRef
5.
go back to reference Lüdge, K., et al.: Large-signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron. 46(12), 1755–1762 (2010)CrossRef Lüdge, K., et al.: Large-signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron. 46(12), 1755–1762 (2010)CrossRef
6.
go back to reference Kovsh, A., et al.: 3.5 W CW operation of quantum dot laser. Electron. Lett. 35(14), 1161–1163 (1999)CrossRef Kovsh, A., et al.: 3.5 W CW operation of quantum dot laser. Electron. Lett. 35(14), 1161–1163 (1999)CrossRef
7.
go back to reference Sumpf, B., et al.: High-power 980 nm quantum dot broad area lasers. Electron. Lett. 39(23), 1655 (2003)CrossRef Sumpf, B., et al.: High-power 980 nm quantum dot broad area lasers. Electron. Lett. 39(23), 1655 (2003)CrossRef
8.
go back to reference Smowton, P.M., et al.: Temperature-dependent threshold current in InP quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 17(5), 1343–1348 (2011)CrossRef Smowton, P.M., et al.: Temperature-dependent threshold current in InP quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 17(5), 1343–1348 (2011)CrossRef
9.
go back to reference Shchekin, O., Deppe, D.: The role of p-type doping and the density of states on the modulation response of quantum dot lasers. Appl. Phys. Lett. 80(15), 2758–2760 (2002)CrossRef Shchekin, O., Deppe, D.: The role of p-type doping and the density of states on the modulation response of quantum dot lasers. Appl. Phys. Lett. 80(15), 2758–2760 (2002)CrossRef
10.
go back to reference Deppe, D.G., Huang, H., Shchekin, O.B.: Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 38(12), 1587–1593 (2002)CrossRef Deppe, D.G., Huang, H., Shchekin, O.B.: Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 38(12), 1587–1593 (2002)CrossRef
11.
go back to reference Deppe, D., Huang, H.: Fermi’s golden rule, nonequilibrium electron capture from the wetting layer, and the modulation response in P-doped quantum-dot lasers. IEEE J. Quantum Electron. 42(3), 324–330 (2006)CrossRef Deppe, D., Huang, H.: Fermi’s golden rule, nonequilibrium electron capture from the wetting layer, and the modulation response in P-doped quantum-dot lasers. IEEE J. Quantum Electron. 42(3), 324–330 (2006)CrossRef
12.
go back to reference Deppe, D., Huffaker, D.: Quantum dimensionality, entropy, and the modulation response of quantum dot lasers. Appl. Phys. Lett. 77(21), 3325–3327 (2000)CrossRef Deppe, D., Huffaker, D.: Quantum dimensionality, entropy, and the modulation response of quantum dot lasers. Appl. Phys. Lett. 77(21), 3325–3327 (2000)CrossRef
13.
go back to reference Ishida, M., et al.: Photon lifetime dependence of modulation efficiency and K factor in 1.3 μ m self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth. Appl. Phys. Lett. 85(18), 4145–4147 (2004)CrossRef Ishida, M., et al.: Photon lifetime dependence of modulation efficiency and K factor in 1.3 μ m self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth. Appl. Phys. Lett. 85(18), 4145–4147 (2004)CrossRef
14.
go back to reference Ishida, M., et al. High-speed modulation characteristics of 1.3/spl mu/m quantum-dot lasers: influence of effective capture time on the maximum bandwidth. in 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004. 2004. IEEE Ishida, M., et al. High-speed modulation characteristics of 1.3/spl mu/m quantum-dot lasers: influence of effective capture time on the maximum bandwidth. in 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004. 2004. IEEE
15.
go back to reference Uskov, A., et al.: Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain. Appl. Phys. Lett. 73(11), 1499–1501 (1998)CrossRef Uskov, A., et al.: Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain. Appl. Phys. Lett. 73(11), 1499–1501 (1998)CrossRef
16.
go back to reference Malic, E., et al.: Coulomb damped relaxation oscillations in semiconductor quantum dot lasers. IEEE J. Sel. Top. Quantum Electron. 13(5), 1242–1248 (2007)CrossRef Malic, E., et al.: Coulomb damped relaxation oscillations in semiconductor quantum dot lasers. IEEE J. Sel. Top. Quantum Electron. 13(5), 1242–1248 (2007)CrossRef
17.
go back to reference Fiore, A., Markus, A.: Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron. 43(4), 287–294 (2007)CrossRef Fiore, A., Markus, A.: Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron. 43(4), 287–294 (2007)CrossRef
18.
go back to reference Bhattacharya, P., et al.: High-speed modulation and switching characteristics of In (Ga) As-Al (Ga) As self-organized quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000)CrossRef Bhattacharya, P., et al.: High-speed modulation and switching characteristics of In (Ga) As-Al (Ga) As self-organized quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000)CrossRef
19.
go back to reference Bhattacharya, P., et al.: Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 39(8), 952–962 (2003)CrossRef Bhattacharya, P., et al.: Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 39(8), 952–962 (2003)CrossRef
20.
go back to reference Alexander, R.R., et al.: Systematic study of the effects of modulation p-doping on 1.3-$\mu {\hbox m} $ quantum-dot lasers. IEEE J. Quantum Electron. 43(12), 1129–1139 (2007)CrossRef Alexander, R.R., et al.: Systematic study of the effects of modulation p-doping on 1.3-$\mu {\hbox m} $ quantum-dot lasers. IEEE J. Quantum Electron. 43(12), 1129–1139 (2007)CrossRef
21.
go back to reference Fathpour, S., Mi, Z.: and Bhattacharya, High-speed quantum dot lasers. J. Phys. D Appl. Phys. 38(13), 2103 (2005)CrossRef Fathpour, S., Mi, Z.: and Bhattacharya, High-speed quantum dot lasers. J. Phys. D Appl. Phys. 38(13), 2103 (2005)CrossRef
22.
go back to reference Tong, C., Xu, D., Yoon, S.F.: Carrier relaxation and modulation response of 1.3-$\mu $ m InAs–GaAs quantum dot lasers. J. Lightwave Technol. 27(23), 5442–5450 (2009)CrossRef Tong, C., Xu, D., Yoon, S.F.: Carrier relaxation and modulation response of 1.3-$\mu $ m InAs–GaAs quantum dot lasers. J. Lightwave Technol. 27(23), 5442–5450 (2009)CrossRef
23.
go back to reference Sanaee, M., Zarifkar, A.: Theoretical modeling of relative intensity noise in p-doped 1.3-μm InAs/GaAs quantum dot lasers. J. Lightwave Technol. 33(1), 234–243 (2014)CrossRef Sanaee, M., Zarifkar, A.: Theoretical modeling of relative intensity noise in p-doped 1.3-μm InAs/GaAs quantum dot lasers. J. Lightwave Technol. 33(1), 234–243 (2014)CrossRef
24.
go back to reference Tan, F., et al.: 850 nm oxide-VCSEL with low relative intensity noise and 40 Gb/s error free data transmission. IEEE Photon. Technol. Lett. 26(3), 289–292 (2013)CrossRef Tan, F., et al.: 850 nm oxide-VCSEL with low relative intensity noise and 40 Gb/s error free data transmission. IEEE Photon. Technol. Lett. 26(3), 289–292 (2013)CrossRef
25.
go back to reference Duan, J., et al.: Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 54(6), 1–7 (2018)CrossRef Duan, J., et al.: Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 54(6), 1–7 (2018)CrossRef
26.
go back to reference Dehghaninejad, A., Sheikhey, M.M., Baghban, H.: Dynamic behavior of injection-locked two-state quantum dot lasers. JOSA B 36(6), 1518–1524 (2019)CrossRef Dehghaninejad, A., Sheikhey, M.M., Baghban, H.: Dynamic behavior of injection-locked two-state quantum dot lasers. JOSA B 36(6), 1518–1524 (2019)CrossRef
27.
go back to reference Sheikhey, M., et al.: Quantum-dot semiconductor lasers with prominent relative intensity noise and spectral characteristics. Opt. Express 29(7), 10236–10248 (2021)CrossRef Sheikhey, M., et al.: Quantum-dot semiconductor lasers with prominent relative intensity noise and spectral characteristics. Opt. Express 29(7), 10236–10248 (2021)CrossRef
28.
go back to reference Capua, A., et al.: Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express 15(9), 5388–5393 (2007)CrossRef Capua, A., et al.: Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express 15(9), 5388–5393 (2007)CrossRef
29.
go back to reference Lelarge, F., et al.: Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 155$\mu $ m. IEEE J. Select. Top. Quantum Electron. 13(1), 111–124 (2007)CrossRef Lelarge, F., et al.: Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 155$\mu $ m. IEEE J. Select. Top. Quantum Electron. 13(1), 111–124 (2007)CrossRef
30.
go back to reference Zhou, Y.-G., et al.: Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express 25(23), 28817–28824 (2017)CrossRef Zhou, Y.-G., et al.: Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express 25(23), 28817–28824 (2017)CrossRef
31.
go back to reference Liao, M., et al.: Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res. 6(11), 1062–1066 (2018)MathSciNetCrossRef Liao, M., et al.: Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res. 6(11), 1062–1066 (2018)MathSciNetCrossRef
32.
go back to reference Liu, A.Y., et al.: Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 25(9), 9535–9543 (2017)CrossRef Liu, A.Y., et al.: Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 25(9), 9535–9543 (2017)CrossRef
33.
go back to reference Kovsh, A.: Quantum-dot comb laser with low relative-intensity noise for each mode. SPIE Newsroom, Bellingham (2008)CrossRef Kovsh, A.: Quantum-dot comb laser with low relative-intensity noise for each mode. SPIE Newsroom, Bellingham (2008)CrossRef
34.
go back to reference Lin, G., et al.: Analysis of relative intensity noise spectra for uniformly and chirpily stacked InAs–InGaAs–GaAs quantum dot lasers. J. Lightwave Technol. 30(3), 331–336 (2011)CrossRef Lin, G., et al.: Analysis of relative intensity noise spectra for uniformly and chirpily stacked InAs–InGaAs–GaAs quantum dot lasers. J. Lightwave Technol. 30(3), 331–336 (2011)CrossRef
35.
go back to reference Tong, C., et al.: Rate equations for 13-$\mu $ m dots-under-a-well and dots-in-a-well self-assembled inas–gaas quantum-dot lasers. IEEE J. Quantum Electron. 42(11), 1175–1183 (2006)CrossRef Tong, C., et al.: Rate equations for 13-$\mu $ m dots-under-a-well and dots-in-a-well self-assembled inas–gaas quantum-dot lasers. IEEE J. Quantum Electron. 42(11), 1175–1183 (2006)CrossRef
36.
go back to reference Mukai, K., et al.: 1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA. IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999)CrossRef Mukai, K., et al.: 1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA. IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999)CrossRef
37.
go back to reference Babaabbasi, G., Mir, A., Yavari, M.H.: Modelling of relative intensity noise in QD-VCSEL. J. Lightwave Technol. 40, 3891 (2022)CrossRef Babaabbasi, G., Mir, A., Yavari, M.H.: Modelling of relative intensity noise in QD-VCSEL. J. Lightwave Technol. 40, 3891 (2022)CrossRef
Metadata
Title
Theoretical analysis of relative intensity noise in semiconductor QD lasers
Authors
Gholaam-Reza Babaabasi
Ali Mir
Mohammad-Hasan Yavari
Publication date
26-05-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02045-5