Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Theoretical Analysis

Authors : Angelo Marcello Tarantino, Luca Lanzoni, Federico Oyedeji Falope

Published in: The Bending Theory of Fully Nonlinear Beams

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter deals with the equilibrium problem of fully nonlinear beams in bending by extending the model for the anticlastic flexion of solids recently proposed in the context of finite elasticity by Lanzoni and Tarantino (J Elast 131:137–170, 2018, [1]). Initially, kinematics is reformulated and, subsequently, a nonlinear theory for the bending of slender beams has been developed. In detail, no hypothesis of smallness is introduced for the deformation and displacement fields, the constitutive law is considered nonlinear and the equilibrium is imposed in the deformed configuration. Explicit formulas are obtained which describe the displacement field, stretches and stresses for each point of the beam using both the Lagrangian and Eulerian descriptions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Recent contributions on the nonlinear damage theory can be found in [3336].
 
2
\(\mathcal {V}\) is the vector space associated with \(\mathcal {E}\).
 
3
Lin is the set of all (second order) tensors whereas \(Lin^{+}\) is the subset of tensors with positive determinant.
 
4
For slender beams, the kinematic model contains only one unknown geometrical parameter: the anticlastic radius r, while for a block the geometrical parameters are three [1].
 
5
The existence of at least one arc, for which \(\lambda _{Z}=1\), is ensured by the continuity of deformation. Uniqueness is guaranteed by the hypothesis 2 of conservation of the planarity of the cross section.
 
6
In the case of a block, the two arcs, for which \(\lambda _{Z}=1\) and \(\lambda _{Y}=1\), are distinct and do not pass through the point \(O'\). Instead when a slender beam is considered, the distance between the two arcs vanishes [1].
 
7
In the sequel, it will be found the relationship between this angle \(\alpha _{0}\) and the pair of self-balanced bending moment to apply to the end faces of the beam.
 
8
It is assumed that the isotropy property is preserved in the deformed configuration.
 
9
The other components of tensor C are zero.
 
10
Or equivalently by the principal invariants of the right Cauchy-Green strain tensor \(\mathbf {C}\).
 
11
The following notations: \(\parallel \mathbf {A}\parallel =\left( \mathrm {tr}\mathbf {A}^{\mathrm {T}}\mathbf {A}\right) ^{1/2}\) for the tensor norm in the linear tensor space Lin and \(\mathbf {A}^{\star }=(\mathrm {det}\mathbf {A})\mathbf {A}^{\mathrm {-T}}\) for the cofactor of the tensor A (if A is invertible) are used.
 
12
This function is polyconvex and satisfies the growth conditions: \(\omega \rightarrow \infty \) as \(\lambda \rightarrow 0^{+}\) or \(\lambda \rightarrow +\infty \). It was used, for example, in [5760].
 
13
Similar positions can be found in [6164].
 
14
The first equation of system (1.22) is also verified for all points of the vertical plane \(X=0\).
 
15
The same symbols are used for normalized and non-normalized constants.
 
16
Using (1.25), it can be promptly verified that, in the absence of deformation, \(\lambda =\lambda _{Z}=1\), is \(S_{Z}=N=0\).
 
17
From (1.32)\(_{3}\) the quantity in square brackets is attained and then replaced into (1.32)\(_{2}\), obtaining (1.33)\(_{3}\). Similarly, from (1.32)\(_{1}\), \(r\,e^{-\frac{Y}{r}}\) is evaluated and then substituted into (1.32)\(_{2}\), obtaining (1.33)\(_{1}\). Expression (1.33)\(_{2}\) is evaluated directly from (1.32)\(_{2}\) using (1.33)\(_{1}\) and (1.33)\(_{3}\).
 
18
It can be see that, by taking \(B=2\beta _{0}r\), (1.41) reduces to BH as \(r\rightarrow \infty \). Similarly, by taking \(L=2\alpha _{0}R_{0}\), (1.43) becomes \(V'=BHL\) as \((R_{0},\,r)\rightarrow \infty \).
 
19
The Landau symbols are used.
 
20
Using the Taylor series expansions, the following approximations are employed:
$$ e^{-\frac{Y}{r}}\simeq 1-\frac{Y}{r}+\frac{Y^{2}}{2\,r^{2}}+o(r^{-2}),\quad \sin \frac{X}{r}\simeq \frac{X}{r}+o(r^{-2}),\quad \cos \frac{X}{r}\simeq 1-\frac{X^{2}}{2\,r^{2}}+o(r^{-3}), $$
$$ \sin \frac{Z}{R_{0}}\simeq \frac{Z}{R_{0}}+o(R_{0}^{-2}),\quad \cos \frac{Z}{R_{0}}\simeq 1-\frac{Z^{2}}{2\,R_{0}^{2}}+o(R_{0}^{-3}). $$
 
21
In the sequel, the infinitesimal terms of higher order are omitted definitively.
 
22
After linearization, the following relationships hold: \(\mathrm {\mathbf {R}}=\mathbf {I}+\mathbf {W}\), \(\mathbf {U}=\mathbf {I}+\mathbf {E}\).
 
23
Using the Taylor series expansions, the following approximation is employed:
$$ \sinh \frac{H}{2r}\simeq \frac{H}{2r}+o(r^{-2}), $$
as well as similar expressions for different arguments of hyperbolic sine function.
 
24
Using the Taylor series expansions, the following approximation is employed:
$$ \frac{1}{\lambda }\simeq 1+\frac{Y}{r}+o(r^{-1}), $$
and the relationship among the constitutive constants (1.25) has been used to obtain (1.63).
 
25
Using the Taylor series expansions, the following approximation is employed:
$$ \frac{1}{\lambda ^{2}\lambda _{Z}}\simeq 1+\frac{2Y}{r}-\frac{Y}{R_{0}}+o(r^{-1})+o(R_{0}^{-1}). $$
.
 
26
Of course, the same result can be achieved for a compressible Mooney-Rivlin material that satisfies the conditions (1.69). In effect, replacing (1.70) into (1.63), it is found
$$ S=\left[ -(4a+12b+8c)+(4b+4c)\,\frac{1}{\nu }\right] \frac{Y}{r}=0, $$
$$ S_{Z}=\left[ -(8b+8c)\,\nu +(4a+8b+4c)\right] \,\frac{Y}{R_{0}}=E\,\varepsilon _{z}. $$
.
 
Literature
2.
go back to reference J. Bernoulli, Specimen alterum calculi differentialis in dimetienda spirali logarithmica, loxodromiis nautarum et areis triangulorum sphaericorum. Una cum additamento quodam ad problema funicularium, aliisque. Acta Eruditorum, Junii 282–290–Opera, 442–453 J. Bernoulli, Specimen alterum calculi differentialis in dimetienda spirali logarithmica, loxodromiis nautarum et areis triangulorum sphaericorum. Una cum additamento quodam ad problema funicularium, aliisque. Acta Eruditorum, Junii 282–290–Opera, 442–453
3.
go back to reference J. Bernoulli, Véritable hypothèse de la résistance des solides, avec la démonstration de la courbure des corps qui font ressort. Académie Royale des Sciences, Paris (1705) J. Bernoulli, Véritable hypothèse de la résistance des solides, avec la démonstration de la courbure des corps qui font ressort. Académie Royale des Sciences, Paris (1705)
4.
go back to reference A. Parent, Essais et Recherches de Mathématique et de Physique, Nouv. Ed., Paris (1713) A. Parent, Essais et Recherches de Mathématique et de Physique, Nouv. Ed., Paris (1713)
5.
go back to reference L. Euler, Mechanica, sive, Motus scientia analytice exposita (Ex typographia Academiae Scientiarum, Petropoli, 1736) L. Euler, Mechanica, sive, Motus scientia analytice exposita (Ex typographia Academiae Scientiarum, Petropoli, 1736)
6.
go back to reference L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes (Bousquent, Lausanne, 1744) L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes (Bousquent, Lausanne, 1744)
7.
go back to reference L. Euler, Genuina principia doctrinae de statu aequilibrii et motu corporum tam perfecte flexibilium quam elasticorum. Opera Omnia II 11, 37–61 (1771) L. Euler, Genuina principia doctrinae de statu aequilibrii et motu corporum tam perfecte flexibilium quam elasticorum. Opera Omnia II 11, 37–61 (1771)
8.
go back to reference L. Euler, De gemina methodo tam aequilibrium quam motum corporum flexibilium determinandi et utriusque egregio consensu. Novi Commentarii academiae scientiarum Petropolitanae 20, 286-303 (1776) L. Euler, De gemina methodo tam aequilibrium quam motum corporum flexibilium determinandi et utriusque egregio consensu. Novi Commentarii academiae scientiarum Petropolitanae 20, 286-303 (1776)
9.
go back to reference C.L.M.H. Navier, Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Mémoires de l’Académie des Sciences de l’ Institut de France, s. 2 7 375-393 C.L.M.H. Navier, Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Mémoires de l’Académie des Sciences de l’ Institut de France, s. 2 7 375-393
10.
go back to reference A.-J.-C. Barré de Saint-Venant, Memoire sur la torsion des prismes. Comptes rendus de l’ Académie des Sci. 37 (1853) A.-J.-C. Barré de Saint-Venant, Memoire sur la torsion des prismes. Comptes rendus de l’ Académie des Sci. 37 (1853)
11.
go back to reference J.A.C. Bresse, Recherches analytiques sur la flexion et la résistance des pièces courbes (Carilian-Goeury et VrDalmont Libraires, Paris, 1854) J.A.C. Bresse, Recherches analytiques sur la flexion et la résistance des pièces courbes (Carilian-Goeury et VrDalmont Libraires, Paris, 1854)
12.
go back to reference H. Lamb, Sur la flexion d’un ressort élastique plat. Philos. Mag. 31, 182–188 (1891)CrossRef H. Lamb, Sur la flexion d’un ressort élastique plat. Philos. Mag. 31, 182–188 (1891)CrossRef
13.
go back to reference W. Thomson (Lord Kelvin), P.G. Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1867) W. Thomson (Lord Kelvin), P.G. Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1867)
14.
go back to reference A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Cambridge University Press, Cambridge, 1927)MATH A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Cambridge University Press, Cambridge, 1927)MATH
15.
go back to reference B.R. Seth, Finite strain in elastic problems. Proc. R. Soc. Lond. A 234, 231–264 (1935)MATH B.R. Seth, Finite strain in elastic problems. Proc. R. Soc. Lond. A 234, 231–264 (1935)MATH
16.
go back to reference R.S. Rivlin, Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A 195, 463–473 (1949) R.S. Rivlin, Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A 195, 463–473 (1949)
17.
go back to reference R.S. Rivlin, Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Proc. R. Soc. Lond. A 242, 173–195 (1949) R.S. Rivlin, Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Proc. R. Soc. Lond. A 242, 173–195 (1949)
18.
go back to reference J.L. Ericksen, Deformations possible in every isotropic, incompressible, perfectly elastic body. ZAMP J. Appl. Math. Phys 5, 466–489 (1954) J.L. Ericksen, Deformations possible in every isotropic, incompressible, perfectly elastic body. ZAMP J. Appl. Math. Phys 5, 466–489 (1954)
19.
go back to reference M.M. Carroll, Finite deformations of incompressible simple solids I. Isotropic solids. Quart. J. Mech. Appl. Math. 21, 148–170 (1968) M.M. Carroll, Finite deformations of incompressible simple solids I. Isotropic solids. Quart. J. Mech. Appl. Math. 21, 148–170 (1968)
21.
go back to reference O.T. Bruhns, N.K. Gupta, A.T.M. Meyers, H. Xiao, Bending of an elastoplastic strip with isotropic kinematic hardening. Arch. Appl. Mech. 72, 759–778 (2003)CrossRef O.T. Bruhns, N.K. Gupta, A.T.M. Meyers, H. Xiao, Bending of an elastoplastic strip with isotropic kinematic hardening. Arch. Appl. Mech. 72, 759–778 (2003)CrossRef
22.
go back to reference C.-C. Wang, Normal configurations and the nonlinear elastoplastic problems of bending, torsion, expansion, and eversion for compressible bodies. Arch. Ration. Mech. Anal. 114, 195–236 (1991) C.-C. Wang, Normal configurations and the nonlinear elastoplastic problems of bending, torsion, expansion, and eversion for compressible bodies. Arch. Ration. Mech. Anal. 114, 195–236 (1991)
23.
go back to reference R.T. Shield, Bending of a beam or wide strip. Quart. J. Mech. Appl. Math. 45, 567–573 (1992)CrossRef R.T. Shield, Bending of a beam or wide strip. Quart. J. Mech. Appl. Math. 45, 567–573 (1992)CrossRef
24.
go back to reference M. Aron, Y. Wang, On deformations with constant modified stretches describing the bending of rectangular blocks. Quart. J. Mech. Appl. Math. 48, 375–387 (1995)MathSciNetCrossRef M. Aron, Y. Wang, On deformations with constant modified stretches describing the bending of rectangular blocks. Quart. J. Mech. Appl. Math. 48, 375–387 (1995)MathSciNetCrossRef
25.
go back to reference R.W. Ogden, Non-linear Elastic Deformations (Ellis Horwood, Chichester, 1984 and Dover Publications 1997) R.W. Ogden, Non-linear Elastic Deformations (Ellis Horwood, Chichester, 1984 and Dover Publications 1997)
26.
go back to reference O.T. Bruhns, H. Xiao, A. Meyers, Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66, 237–256 (2002)MathSciNetCrossRef O.T. Bruhns, H. Xiao, A. Meyers, Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66, 237–256 (2002)MathSciNetCrossRef
27.
28.
go back to reference C. Coman, M. Destrade, Asymptotic results for bifurcations in pure bending of rubber blocks. Quart. J. Mech. Appl. Math. 61, 395–414 (2008)MathSciNetCrossRef C. Coman, M. Destrade, Asymptotic results for bifurcations in pure bending of rubber blocks. Quart. J. Mech. Appl. Math. 61, 395–414 (2008)MathSciNetCrossRef
29.
go back to reference S. Roccabianca, M. Gei, D. Bigoni, Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments. IMA J. Appl. Math. 75, 525–548 (2010)MathSciNetCrossRef S. Roccabianca, M. Gei, D. Bigoni, Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments. IMA J. Appl. Math. 75, 525–548 (2010)MathSciNetCrossRef
30.
go back to reference A.N. Gent, I.S. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Tech. 72, 253–262 (1999)CrossRef A.N. Gent, I.S. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Tech. 72, 253–262 (1999)CrossRef
31.
go back to reference F. Kassianidis, R.W. Ogden, On large bending deformations of transversely isotropic rectangular elastic blocks. Note di Matematica 27, 131–154 (2007)MathSciNetMATH F. Kassianidis, R.W. Ogden, On large bending deformations of transversely isotropic rectangular elastic blocks. Note di Matematica 27, 131–154 (2007)MathSciNetMATH
32.
go back to reference K.R. Rajagopal, A.R. Srinivasa, A.S. Wineman, On the shear and bending of a degrading polymer beam. Int. J. Plast. 23, 1618–1636 (2007)CrossRef K.R. Rajagopal, A.R. Srinivasa, A.S. Wineman, On the shear and bending of a degrading polymer beam. Int. J. Plast. 23, 1618–1636 (2007)CrossRef
33.
go back to reference A.M. Tarantino, Equilibrium paths of a hyperelastic body under progressive damage. J. Elast. 114 225–250 (2014) A.M. Tarantino, Equilibrium paths of a hyperelastic body under progressive damage. J. Elast. 114 225–250 (2014)
34.
go back to reference L. Lanzoni, A.M. Tarantino, Damaged hyperelastic membranes. Inter. J. Nonlinear Mech. 60, 9–22 (2014)CrossRef L. Lanzoni, A.M. Tarantino, Damaged hyperelastic membranes. Inter. J. Nonlinear Mech. 60, 9–22 (2014)CrossRef
35.
go back to reference L. Lanzoni, A.M. Tarantino, Equilibrium configurations and stability of a damaged body under uniaxial tractions. ZAMP J. Appl. Math. Phys. 66 171–190 (2015) L. Lanzoni, A.M. Tarantino, Equilibrium configurations and stability of a damaged body under uniaxial tractions. ZAMP J. Appl. Math. Phys. 66 171–190 (2015)
36.
go back to reference L. Lanzoni, A.M. Tarantino, A simple nonlinear model to simulate the localized necking and neck propagation. Inter. J. Nonlinear Mech. 84, 94–104 (2016)CrossRef L. Lanzoni, A.M. Tarantino, A simple nonlinear model to simulate the localized necking and neck propagation. Inter. J. Nonlinear Mech. 84, 94–104 (2016)CrossRef
37.
go back to reference L.M. Kanner, C.O. Horgan, Plane strain bending of strain-stiffening rubber-like rectangular beams. Inter. J. Solid. Struct. 45, 1713–1729 (2008)CrossRef L.M. Kanner, C.O. Horgan, Plane strain bending of strain-stiffening rubber-like rectangular beams. Inter. J. Solid. Struct. 45, 1713–1729 (2008)CrossRef
38.
go back to reference M. Destrade, A.N. Annaidh, C.D. Coman, Bending instabilities of soft biological tissues. Inter. J. Solid. Struct. 46, 4322–4330 (2009)CrossRef M. Destrade, A.N. Annaidh, C.D. Coman, Bending instabilities of soft biological tissues. Inter. J. Solid. Struct. 46, 4322–4330 (2009)CrossRef
39.
go back to reference T.M. Wang, S.L. Lee, O.C. Zienkiewicz, Numerical analysis of large deflections of beams. Inter. J. Mech. Sci. 3, 219–228 (1961)CrossRef T.M. Wang, S.L. Lee, O.C. Zienkiewicz, Numerical analysis of large deflections of beams. Inter. J. Mech. Sci. 3, 219–228 (1961)CrossRef
40.
41.
go back to reference T.M. Wang, Non-linear bending of beams with uniformly distributed loads. Inter. J. Nonlinear Mech. 4, 389–395 (1969)CrossRef T.M. Wang, Non-linear bending of beams with uniformly distributed loads. Inter. J. Nonlinear Mech. 4, 389–395 (1969)CrossRef
42.
go back to reference J.T. Holden, On the finite deflections of thin beams. Inter. J. Solid. Struct. 8, 1051–11055 (1972)CrossRef J.T. Holden, On the finite deflections of thin beams. Inter. J. Solid. Struct. 8, 1051–11055 (1972)CrossRef
43.
go back to reference E. Reissner, On one-dimensional finite-strain beam theory: the plane problem. ZAMP J. Appl. Math. Phys. 23 795–804 (1972) E. Reissner, On one-dimensional finite-strain beam theory: the plane problem. ZAMP J. Appl. Math. Phys. 23 795–804 (1972)
44.
go back to reference E. Reissner, On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)CrossRef E. Reissner, On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)CrossRef
45.
go back to reference E. Reissner, On finite deformations of space-curved beams. ZAMP J. Appl. Math. Phys. 32, 734–744 (1981) E. Reissner, On finite deformations of space-curved beams. ZAMP J. Appl. Math. Phys. 32, 734–744 (1981)
46.
go back to reference K.-J. Bathe, S. Bolourchi, Large displacement analysis of three-dimensional beam structures. Num. Meth. Eng. 14, 961–986 (1979)CrossRef K.-J. Bathe, S. Bolourchi, Large displacement analysis of three-dimensional beam structures. Num. Meth. Eng. 14, 961–986 (1979)CrossRef
47.
go back to reference J.C. Simo, A finite strain beam formulation. The three -dimensional beam structures. Part I. Comput. Meth. Appl. Mech. Eng. 49, 55–70 (1985) J.C. Simo, A finite strain beam formulation. The three -dimensional beam structures. Part I. Comput. Meth. Appl. Mech. Eng. 49, 55–70 (1985)
48.
go back to reference J.C. Simo, L. Vu-Quoc, A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Meth. Appl. Mech. Eng. 58, 79–116 (1986) J.C. Simo, L. Vu-Quoc, A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Meth. Appl. Mech. Eng. 58, 79–116 (1986)
49.
go back to reference J.C. Simo, L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part I. J. Appl. Mech. 53, 849–854 (1986)CrossRef J.C. Simo, L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part I. J. Appl. Mech. 53, 849–854 (1986)CrossRef
50.
go back to reference J.C. Simo, L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part II. J. Appl. Mech. 53, 854–855 (1986)MATH J.C. Simo, L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part II. J. Appl. Mech. 53, 854–855 (1986)MATH
51.
go back to reference A. Cardona, M. Geradin, A beam finite element non-linear theory with finite rotations. Int. J. Numer. Meth. Eng. 26, 2403–2438 (1988)CrossRef A. Cardona, M. Geradin, A beam finite element non-linear theory with finite rotations. Int. J. Numer. Meth. Eng. 26, 2403–2438 (1988)CrossRef
52.
go back to reference J.C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Meth. Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetCrossRef J.C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Meth. Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetCrossRef
53.
go back to reference A. Ibrahimbegovič, On finite element implementation of geometrically nonlinear Reissner’ s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)CrossRef A. Ibrahimbegovič, On finite element implementation of geometrically nonlinear Reissner’ s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)CrossRef
54.
go back to reference F. Auricchio, P. Carotenuto, A. Reali, On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Inter. J. Solid. Struct. 45, 4366–4781 (2008)CrossRef F. Auricchio, P. Carotenuto, A. Reali, On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Inter. J. Solid. Struct. 45, 4366–4781 (2008)CrossRef
55.
go back to reference A.K. Nallathambi, C.L. Rao, S.M. Srinivasan, Large deflection of constant curvature cantilever beam under follower load. Int. J. Mech. Sci. 52, 440–445 (2010)CrossRef A.K. Nallathambi, C.L. Rao, S.M. Srinivasan, Large deflection of constant curvature cantilever beam under follower load. Int. J. Mech. Sci. 52, 440–445 (2010)CrossRef
56.
go back to reference K. Lee, Large deflections of cantilever beams of non-linear elastic material under a combined loading. Int. J. Nonlinear Mech. 37, 439–443 (2002)CrossRef K. Lee, Large deflections of cantilever beams of non-linear elastic material under a combined loading. Int. J. Nonlinear Mech. 37, 439–443 (2002)CrossRef
57.
go back to reference A.M. Tarantino, Thin hyperelastic sheets of compressible material: field equations, Airy stress function and an application in fracture mechanics. J. Elast. 44, 37–59 (1996) A.M. Tarantino, Thin hyperelastic sheets of compressible material: field equations, Airy stress function and an application in fracture mechanics. J. Elast. 44, 37–59 (1996)
58.
go back to reference A.M. Tarantino, The singular equilibrium field at the notch-tip of a compressible material in finite elastostatics. ZAMP J. Appl. Math. Phys. 48, 370–388 (1997) A.M. Tarantino, The singular equilibrium field at the notch-tip of a compressible material in finite elastostatics. ZAMP J. Appl. Math. Phys. 48, 370–388 (1997)
59.
go back to reference A.M. Tarantino, On extreme thinning at the notch-tip of a neo-Hookean sheet. Quart. J. Mech. Appl. Mech. 51(2), 179–190 (1998) A.M. Tarantino, On extreme thinning at the notch-tip of a neo-Hookean sheet. Quart. J. Mech. Appl. Mech. 51(2), 179–190 (1998)
60.
go back to reference A.M. Tarantino, On the finite motions generated by a mode I propagating crack. J. Elast. 57, 85–103 (1999) A.M. Tarantino, On the finite motions generated by a mode I propagating crack. J. Elast. 57, 85–103 (1999)
61.
go back to reference A.M. Tarantino, Crack propagation in finite elastodynamics. Math. Mech. Solids 10 577–601 (2005) A.M. Tarantino, Crack propagation in finite elastodynamics. Math. Mech. Solids 10 577–601 (2005)
62.
go back to reference A.M. Tarantino, Nonlinear fracture mechanics for an elastic Bell material. Quart. J. Mech. Appl. Math. 50, 435–456 (1997)MathSciNetCrossRef A.M. Tarantino, Nonlinear fracture mechanics for an elastic Bell material. Quart. J. Mech. Appl. Math. 50, 435–456 (1997)MathSciNetCrossRef
63.
go back to reference A.M. Tarantino, A. Nobili, Finite homogeneous deformations of symmetrically loaded compressible membranes. ZAMP J. Appl. Math. Phys. 58, 659–678 (2006) A.M. Tarantino, A. Nobili, Finite homogeneous deformations of symmetrically loaded compressible membranes. ZAMP J. Appl. Math. Phys. 58, 659–678 (2006)
64.
go back to reference A.M. Tarantino, Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions. J. Elast. 92, 227–254 (2008)MathSciNetCrossRef A.M. Tarantino, Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions. J. Elast. 92, 227–254 (2008)MathSciNetCrossRef
65.
go back to reference A.M. Tarantino, Scienza delle Costruzioni (Pitagora Editrice Bologna, Bologna, 2005). in Italian A.M. Tarantino, Scienza delle Costruzioni (Pitagora Editrice Bologna, Bologna, 2005). in Italian
Metadata
Title
Theoretical Analysis
Authors
Angelo Marcello Tarantino
Luca Lanzoni
Federico Oyedeji Falope
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-14676-4_1

Premium Partners