Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2017

29-06-2017 | ORIGINAL

Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester

Authors: Pei Zhu, Xingmin Ren, Weiyang Qin, Yongfeng Yang, Zhiyong Zhou

Published in: Archive of Applied Mechanics | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study the characteristics of a tri-stable energy harvester (TEH) that is realized by the effect of magnetic attractive forces. The electromechanical model is established, and the corresponding coupling equations are derived by Euler–Lagrange equation. The potential energy indicates that the TEH’s potential well depths are the determinant factors for performance and can be designed such that the snap-through is easy to be elicited. We find that the TEH exhibits the best performance when the three potential well’s depths are nearly identical. To highlight the advantage of the TEH in harvesting energy, the comparisons between the tri-stable energy harvester and the bi-stable energy harvester (BEH) are carried out in simulations and experiments. The results prove that the TEH is preferable to the BEH in energy harvesting. The validation experiments show that the TEH owns a wide range of frequency of snap-through and high output voltage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Matiko, J.W., Grabham, N.J., Beeby, S.P., Tudor, M.J.: Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 012002 (2014)CrossRef Matiko, J.W., Grabham, N.J., Beeby, S.P., Tudor, M.J.: Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 012002 (2014)CrossRef
3.
go back to reference Kausar, A.S.M.Z., Reza, A.W., Saleh, M.U., Ramiah, H.: Energing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy Rev. 38, 973–989 (2014)CrossRef Kausar, A.S.M.Z., Reza, A.W., Saleh, M.U., Ramiah, H.: Energing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy Rev. 38, 973–989 (2014)CrossRef
4.
go back to reference Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)CrossRef Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)CrossRef
5.
go back to reference Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2012)CrossRef Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2012)CrossRef
6.
go back to reference Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)CrossRef Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)CrossRef
7.
go back to reference Erturk, A.: Electromechanical modeling of piezoelectric energy harvester, Ph.D. thesis, Virginia Polytechnic Institute and State University (2009) Erturk, A.: Electromechanical modeling of piezoelectric energy harvester, Ph.D. thesis, Virginia Polytechnic Institute and State University (2009)
8.
go back to reference Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1–2), 515–30 (2009)CrossRef Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1–2), 515–30 (2009)CrossRef
9.
go back to reference Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)CrossRef Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)CrossRef
10.
go back to reference Marinkovic, B., Koser, H.: Smart Sand—a wide bandwidth vibration energy harvesting platform. Appl. Phys. Lett. 94, 103505 (2009)CrossRef Marinkovic, B., Koser, H.: Smart Sand—a wide bandwidth vibration energy harvesting platform. Appl. Phys. Lett. 94, 103505 (2009)CrossRef
11.
go back to reference Barton, D., Burrow, S., Clare, L.: Energy harvesting from vibrations with a nonlinear oscillator. ASME J. Vib. Acoust. 132, 021009 (2010)CrossRef Barton, D., Burrow, S., Clare, L.: Energy harvesting from vibrations with a nonlinear oscillator. ASME J. Vib. Acoust. 132, 021009 (2010)CrossRef
12.
go back to reference Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–31 (2010)CrossRef Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–31 (2010)CrossRef
13.
go back to reference Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)CrossRefMATH Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)CrossRefMATH
14.
go back to reference Masana, R., Daqaq, M.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)CrossRef Masana, R., Daqaq, M.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)CrossRef
15.
go back to reference Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)CrossRef Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)CrossRef
16.
go back to reference Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010)CrossRef Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010)CrossRef
17.
go back to reference Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)CrossRefMATH Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)CrossRefMATH
18.
go back to reference Vocca, H., Neri, I., Travasso, F., Gammaitoni, L.: Kinetic energy harvesting with bistable oscillators. Appl. Energy 97, 771–776 (2012)CrossRef Vocca, H., Neri, I., Travasso, F., Gammaitoni, L.: Kinetic energy harvesting with bistable oscillators. Appl. Energy 97, 771–776 (2012)CrossRef
19.
go back to reference Gao, Y.J., Leng, Y.G., Fan, S.B., Lai, Z.H.: Performance of bistable piezoelectric cantilever vibration energy harvesters with an elastic support external magnet. Smart Mater. Struct. 23, 095003 (2014)CrossRef Gao, Y.J., Leng, Y.G., Fan, S.B., Lai, Z.H.: Performance of bistable piezoelectric cantilever vibration energy harvesters with an elastic support external magnet. Smart Mater. Struct. 23, 095003 (2014)CrossRef
20.
go back to reference Leng, Y.G., Gao, Y.J., Tan, D., Fan, S.B., Lai, Z.H.: An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations. J. Appl. Phys. 117(6), 064901 (2015)CrossRef Leng, Y.G., Gao, Y.J., Tan, D., Fan, S.B., Lai, Z.H.: An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations. J. Appl. Phys. 117(6), 064901 (2015)CrossRef
21.
go back to reference Wang, H.Y., Tang, L.H.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 86, 29–39 (2017)CrossRef Wang, H.Y., Tang, L.H.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 86, 29–39 (2017)CrossRef
22.
go back to reference Liu, S.G., Cheng, Q.J., Zhao, D., Feng, L.F.: Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper. Sens. Actuators A Phys. 245, 97–105 (2016)CrossRef Liu, S.G., Cheng, Q.J., Zhao, D., Feng, L.F.: Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper. Sens. Actuators A Phys. 245, 97–105 (2016)CrossRef
23.
go back to reference Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333, 5525–5547 (2014)CrossRef Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333, 5525–5547 (2014)CrossRef
24.
go back to reference Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)CrossRef Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)CrossRef
25.
go back to reference Zhou, S., Cao, J., Lin, J., Wang, Z.Z.: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys. 67, 30902 (2014)CrossRef Zhou, S., Cao, J., Lin, J., Wang, Z.Z.: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys. 67, 30902 (2014)CrossRef
26.
go back to reference Jung, J., Kim, P., Lee, J., Seok, J.: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. Int. J. Mech. Sci. 92, 206–222 (2015)CrossRef Jung, J., Kim, P., Lee, J., Seok, J.: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. Int. J. Mech. Sci. 92, 206–222 (2015)CrossRef
27.
go back to reference Zhu, P., Ren, X.M., Qin, W.Y., Zhou, Z.Y.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. doi:10.1007/s00419-016-1175-z Zhu, P., Ren, X.M., Qin, W.Y., Zhou, Z.Y.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. doi:10.​1007/​s00419-016-1175-z
28.
go back to reference Tékam, G.T.O., Kwuimy, C.A.K., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25, 013112 (2015)MathSciNetCrossRefMATH Tékam, G.T.O., Kwuimy, C.A.K., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25, 013112 (2015)MathSciNetCrossRefMATH
29.
go back to reference Zhou, Z.Y., Qin, W.Y., Zhu, P.: Energy harvesting in a quad-stable harvester subjected to random excitation. AIP Adv. 6, 025022 (2016)CrossRef Zhou, Z.Y., Qin, W.Y., Zhu, P.: Energy harvesting in a quad-stable harvester subjected to random excitation. AIP Adv. 6, 025022 (2016)CrossRef
30.
go back to reference Zhou, Z.Y., Qin, W.Y., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A Phys. 243, 151–158 (2016)CrossRef Zhou, Z.Y., Qin, W.Y., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A Phys. 243, 151–158 (2016)CrossRef
31.
go back to reference Zhou, Z.Y., Qin, W.Y., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Signal Process. 84, 158–168 (2017)CrossRef Zhou, Z.Y., Qin, W.Y., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Signal Process. 84, 158–168 (2017)CrossRef
Metadata
Title
Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester
Authors
Pei Zhu
Xingmin Ren
Weiyang Qin
Yongfeng Yang
Zhiyong Zhou
Publication date
29-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2017
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1270-9

Other articles of this Issue 9/2017

Archive of Applied Mechanics 9/2017 Go to the issue

Premium Partners