Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Theoretical Background

Author : Miranda Louwerse

Published in: Efficient Control and Spontaneous Transitions

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, some necessary theoretical background is introduced which will inform the work in the remainder of this thesis. Section 2.1 begins with a review of stochastic dynamics, followed by some background into information theory in Sect. 2.1.2 and stochastic thermodynamics in Sect. 2.1.3. The fundamentals of transition-path theory are then reviewed in Sect. 2.2 and the utility of the committor as a reaction coordinate is discussed in more detail. In Sect. 2.3, the thermodynamics of control protocols are reviewed, followed by introduction of minimum-work protocols in the linear-response regime and the generalized friction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Morin, D.: Introduction to Classical Mechanics. Cambridge University Press, Cambridge (2008)MATH Morin, D.: Introduction to Classical Mechanics. Cambridge University Press, Cambridge (2008)MATH
2.
go back to reference Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH
3.
go back to reference Peliti, L., Pigolotti, S.: Stochastic Thermodynamics: An Introduction. Princeton University Press, Princeton (2021)MATH Peliti, L., Pigolotti, S.: Stochastic Thermodynamics: An Introduction. Princeton University Press, Princeton (2021)MATH
4.
go back to reference Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2002)MATH Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2002)MATH
5.
go back to reference Press, W., Teukolksy, S.A., Vetterline, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007) Press, W., Teukolksy, S.A., Vetterline, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)
7.
go back to reference Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)MATH Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)MATH
9.
go back to reference Atkins, P., de Paula, J., Keeler, J.: Physical Chemistry, 11th edn. Oxford University Press, Oxford (2018) Atkins, P., de Paula, J., Keeler, J.: Physical Chemistry, 11th edn. Oxford University Press, Oxford (2018)
10.
11.
go back to reference Hartich, D., Barato, A., Seifert, U.: Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. Theory Exp. 2014, 02016 (2014) Hartich, D., Barato, A., Seifert, U.: Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. Theory Exp. 2014, 02016 (2014)
12.
go back to reference Barato, A.C., Hartich, D., Seifert, U.: Rate of mutual information between coarse-grained non-Markovian variables. J. Stat. Phys. 153, 460–478 (2013)ADSMathSciNetMATHCrossRef Barato, A.C., Hartich, D., Seifert, U.: Rate of mutual information between coarse-grained non-Markovian variables. J. Stat. Phys. 153, 460–478 (2013)ADSMathSciNetMATHCrossRef
13.
go back to reference Van Den Broeck, C., Esposito, M.: Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015)ADSCrossRef Van Den Broeck, C., Esposito, M.: Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015)ADSCrossRef
14.
go back to reference Brown, A.I., Sivak, D.A.: Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120(1), 434–459 (2020)CrossRef Brown, A.I., Sivak, D.A.: Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120(1), 434–459 (2020)CrossRef
15.
go back to reference Seifert, U.: From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019)ADSCrossRef Seifert, U.: From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019)ADSCrossRef
16.
go back to reference Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetMATHCrossRef Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetMATHCrossRef
17.
go back to reference Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noe, F. (eds.) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, chapter 7, pp. 91–100. Springer, Berlin (2014) Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noe, F. (eds.) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, chapter 7, pp. 91–100. Springer, Berlin (2014)
19.
go back to reference Berezhkovskii, A.M., Szabo, A.: Committors, first-passage times, fluxes, Markov states, milestones, and all that. J. Chem. Phys 150, 54106 (2019)CrossRef Berezhkovskii, A.M., Szabo, A.: Committors, first-passage times, fluxes, Markov states, milestones, and all that. J. Chem. Phys 150, 54106 (2019)CrossRef
20.
go back to reference Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef
21.
go back to reference Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef
22.
go back to reference Berezhkovskii, A., Szabo, A.: One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys. 122, 014503 (2005)ADSCrossRef Berezhkovskii, A., Szabo, A.: One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys. 122, 014503 (2005)ADSCrossRef
23.
go back to reference Vanden-Eijnden, E., Venturoli, M.: Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J. Chem. Phys. 130(19), 194103 (2009)ADSCrossRef Vanden-Eijnden, E., Venturoli, M.: Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J. Chem. Phys. 130(19), 194103 (2009)ADSCrossRef
24.
go back to reference Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)ADSCrossRef Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)ADSCrossRef
25.
go back to reference Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125(2), 024106 (2006)ADSCrossRef Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125(2), 024106 (2006)ADSCrossRef
26.
go back to reference Zhao, R., Shen, J., Skeel, R.D.: Maximum flux transition paths of conformational change. J. Chem. Theory Comput. 6(8), 2411–2423 (2010)CrossRef Zhao, R., Shen, J., Skeel, R.D.: Maximum flux transition paths of conformational change. J. Chem. Theory Comput. 6(8), 2411–2423 (2010)CrossRef
27.
go back to reference Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef
28.
go back to reference Venturoli, M., Vanden-Eijnden, E., Ciccotti, G.: Kinetics of phase transitions in two dimensional Ising models studied with the string method. J. Math. Chem. 45, 188–222 (2009)MathSciNetMATHCrossRef Venturoli, M., Vanden-Eijnden, E., Ciccotti, G.: Kinetics of phase transitions in two dimensional Ising models studied with the string method. J. Math. Chem. 45, 188–222 (2009)MathSciNetMATHCrossRef
29.
go back to reference Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98(10), 1–4 (2007)CrossRef Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98(10), 1–4 (2007)CrossRef
30.
go back to reference Sivak, D.A., Crooks, G.E.: Thermodynamic geometry of minimum-dissipation driven barrier crossing. Phys. Rev. E 94, 052106 (2016)ADSCrossRef Sivak, D.A., Crooks, G.E.: Thermodynamic geometry of minimum-dissipation driven barrier crossing. Phys. Rev. E 94, 052106 (2016)ADSCrossRef
31.
go back to reference Blaber, S., Sivak, D.A.: Skewed thermodynamic geometry and optimal free energy estimation. J. Chem. Phys. 153(24), 244119 (2020)ADSCrossRef Blaber, S., Sivak, D.A.: Skewed thermodynamic geometry and optimal free energy estimation. J. Chem. Phys. 153(24), 244119 (2020)ADSCrossRef
32.
go back to reference Tiwary, P., van de Walle, A.: A review of enhanced sampling approaches for accelerated molecular dynamics. In: Weinberger, C.R., Tucker, G.J. (eds.) Multiscale materials modeling for nanomechanics, chapter 6, pp. 195–221. Springer International Publishing, Berlin (2016) Tiwary, P., van de Walle, A.: A review of enhanced sampling approaches for accelerated molecular dynamics. In: Weinberger, C.R., Tucker, G.J. (eds.) Multiscale materials modeling for nanomechanics, chapter 6, pp. 195–221. Springer International Publishing, Berlin (2016)
33.
go back to reference Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)CrossRef Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)CrossRef
34.
go back to reference Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3658–3661 (2001)ADSCrossRef Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3658–3661 (2001)ADSCrossRef
35.
36.
go back to reference Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)ADSCrossRef Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)ADSCrossRef
37.
go back to reference Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61(3), 2361–2366 (2000)ADSCrossRef Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61(3), 2361–2366 (2000)ADSCrossRef
38.
go back to reference Sivak, D.A., Crooks, G.E.: Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108(19), 190602 (2012)ADSCrossRef Sivak, D.A., Crooks, G.E.: Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108(19), 190602 (2012)ADSCrossRef
41.
go back to reference Blaber, S., Sivak, D.A.: Optimal control of protein copy number. Phys. Rev. E 101, 22118 (2020)ADSCrossRef Blaber, S., Sivak, D.A.: Optimal control of protein copy number. Phys. Rev. E 101, 22118 (2020)ADSCrossRef
42.
go back to reference Zulkowski, P.R., Sivak, D.A., Crooks, G.E., Deweese, M.R.: Geometry of thermodynamic control. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 86(4), 1–8 (2012)CrossRef Zulkowski, P.R., Sivak, D.A., Crooks, G.E., Deweese, M.R.: Geometry of thermodynamic control. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 86(4), 1–8 (2012)CrossRef
43.
go back to reference Rotskoff, G.M., Crooks, G.E.: Optimal control in nonequilibrium systems: dynamic Riemannian geometry of the Ising model. Phys. Rev. E 92, 060102 (2015)ADSCrossRef Rotskoff, G.M., Crooks, G.E.: Optimal control in nonequilibrium systems: dynamic Riemannian geometry of the Ising model. Phys. Rev. E 92, 060102 (2015)ADSCrossRef
44.
go back to reference Rotskoff, G.M., Crooks, G.E., Vanden-Eijnden, E.: A geometric approach to optimal nonequilibrium control: minimizing dissipation in nanomagnetic spin systems. Phys. Rev. E 95, 012148 (2017)ADSCrossRef Rotskoff, G.M., Crooks, G.E., Vanden-Eijnden, E.: A geometric approach to optimal nonequilibrium control: minimizing dissipation in nanomagnetic spin systems. Phys. Rev. E 95, 012148 (2017)ADSCrossRef
45.
go back to reference Gingrich, T., Rotskoff, G., Crooks, G., Geissler, P.: Near-optimal protocols in complex nonequilibrium transformations. PNAS 113, 10263–10268 (2016)ADSCrossRef Gingrich, T., Rotskoff, G., Crooks, G., Geissler, P.: Near-optimal protocols in complex nonequilibrium transformations. PNAS 113, 10263–10268 (2016)ADSCrossRef
46.
go back to reference Engel, M.C., Smith, J.A., Brenner, M.P.: Optimal control of nonequilibrium systems through automatic differentiation (2022). arXiv:2201.00098 Engel, M.C., Smith, J.A., Brenner, M.P.: Optimal control of nonequilibrium systems through automatic differentiation (2022). arXiv:2201.00098
Metadata
Title
Theoretical Background
Author
Miranda Louwerse
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-40534-1_2

Premium Partners