Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Theoretical Basis of the Structural Modeling Method

Authors : Vladimir I. Erofeev, Igor S. Pavlov

Published in: Structural Modeling of Metamaterials

Publisher: Springer International Publishing

Abstract

The principles of the structural modeling method, the development of the theoretical foundations of which this monograph is devoted, are formulated in the first chapter. Moreover, the problem of the applicability of the classical mechanics laws to a theoretical description of media with micro- and nanostructure is discussed here.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
For comparison—a = 0.54 nm in silicon and a = 0.57 nm in germanium.
 
Literature
1.
go back to reference Sedov, L.I.: Mechanics of Continuous Medium, vol. 1. World Scientific Publ, Singapore (1997) Sedov, L.I.: Mechanics of Continuous Medium, vol. 1. World Scientific Publ, Singapore (1997)
2.
go back to reference Kunin, I.A.: Elastic Media with Microstructure, 2 volumes. Springer, Berlin (1983) Kunin, I.A.: Elastic Media with Microstructure, 2 volumes. Springer, Berlin (1983)
3.
go back to reference Nowacki, W.: Theory of Micropolar Elasticity. J. Springer, Wien (1970) Nowacki, W.: Theory of Micropolar Elasticity. J. Springer, Wien (1970)
4.
go back to reference Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian)
5.
go back to reference Newton, I.: Philosophical Naturalis Principia Mathematica. London, 419 p (1686) Newton, I.: Philosophical Naturalis Principia Mathematica. London, 419 p (1686)
7.
go back to reference Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999) Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999)
8.
go back to reference Cauchy, A.L.: Memoire sur la dispersion de la lumiere. Paris (1830) Cauchy, A.L.: Memoire sur la dispersion de la lumiere. Paris (1830)
9.
go back to reference Powell, B.: An abstract of the essential principles of A.Cauchy’s view of the undulatory theory, leading to an explanation of the dispersion of light; with remarks. Phil. Mag. 6(3), 31 (1835) Powell, B.: An abstract of the essential principles of A.Cauchy’s view of the undulatory theory, leading to an explanation of the dispersion of light; with remarks. Phil. Mag. 6(3), 31 (1835)
10.
go back to reference Tomson, S.W.: Popular Lectures and Addresses, vol. I. MacMilan and Co and New York, Constitution of Matter. London (1889) Tomson, S.W.: Popular Lectures and Addresses, vol. I. MacMilan and Co and New York, Constitution of Matter. London (1889)
11.
go back to reference Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954) Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954)
12.
go back to reference Brillouin, L., Parodi, M.: Wave Propagation in Periodic Structures. McGrawHill, New York (1946) Brillouin, L., Parodi, M.: Wave Propagation in Periodic Structures. McGrawHill, New York (1946)
13.
go back to reference Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A. Hermann et Fils, Paris, 226p (1909) (Reprint, 2009) Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A. Hermann et Fils, Paris, 226p (1909) (Reprint, 2009)
14.
go back to reference Mac Cullagh, J.: An essay towards a dynamical theory of crystalline reflection and refraction. Trans. R. Irish. Acad. Sci. 21, 17–50 (1839) Mac Cullagh, J.: An essay towards a dynamical theory of crystalline reflection and refraction. Trans. R. Irish. Acad. Sci. 21, 17–50 (1839)
15.
go back to reference Mossoti, E.: Lezioni di Meccanica Razionale, Firenze (1851) Mossoti, E.: Lezioni di Meccanica Razionale, Firenze (1851)
16.
go back to reference Clebsch, A.: Theorie der Elastizität tester Korper, Leipzig, 424 p (1862) Clebsch, A.: Theorie der Elastizität tester Korper, Leipzig, 424 p (1862)
17.
go back to reference Kirchhoff, G.: Vorlesungen uber mathematische Physik, p. 466p. Mechanik, Leipzig (1874) Kirchhoff, G.: Vorlesungen uber mathematische Physik, p. 466p. Mechanik, Leipzig (1874)
18.
go back to reference Duhem, P.: Hidrodynamique, Elasticité. Acoustique, Paris (1891) Duhem, P.: Hidrodynamique, Elasticité. Acoustique, Paris (1891)
19.
go back to reference Hertz, K.: Die Prinzipien der Mechanik. Leipzig (1894) Hertz, K.: Die Prinzipien der Mechanik. Leipzig (1894)
20.
go back to reference Voigt, W.: Theoretische Studien uber die Elastizitatsverhaltnisse der Krystalle. Abn. Ges.Wiss. Gottingen, vol. 34 (1887). Voigt, W.: Theoretische Studien uber die Elastizitatsverhaltnisse der Krystalle. Abn. Ges.Wiss. Gottingen, vol. 34 (1887).
21.
go back to reference Frenkel, Ya.I.: The Kinetic Theory of Liquids. USSR Academic Press, Moscow (1945) (in Russian). Frenkel, Ya.I.: The Kinetic Theory of Liquids. USSR Academic Press, Moscow (1945) (in Russian).
22.
go back to reference Anselm, A.I., Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Soviet Phys. JETP. 19(5), 438–446 (1949) ((in Russian)) Anselm, A.I., Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Soviet Phys. JETP. 19(5), 438–446 (1949) ((in Russian))
23.
go back to reference Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Part 2. Dynamics of 2D and 3D lattices. JETP 19(8), 692–702 (1949) (in Russian). Porfiryeva, N.N.: Orientational-translational waves in molecular crystals. Part 2. Dynamics of 2D and 3D lattices. JETP 19(8), 692–702 (1949) (in Russian).
24.
go back to reference Mechanics of generalized continua. Proceedings of the IUTAM-symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications. Freudenstadt and Stuttgart, 1967, ed. E. Kroner, Springer-Verlag, Berlin, Heidelberg, New York (1968) Mechanics of generalized continua. Proceedings of the IUTAM-symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications. Freudenstadt and Stuttgart, 1967, ed. E. Kroner, Springer-Verlag, Berlin, Heidelberg, New York (1968)
25.
go back to reference Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys. Solid State 2, 1272–1281 (1961). Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Phys. Solid State 2, 1272–1281 (1961).
26.
go back to reference Kuvshinskiy, E.V., Aero, E.L.: Continuum theory of asymmetric elasticity—the problem of internal rotation. Soviet Phys. Solid State 5, 1892–1897 (1964). Kuvshinskiy, E.V., Aero, E.L.: Continuum theory of asymmetric elasticity—the problem of internal rotation. Soviet Phys. Solid State 5, 1892–1897 (1964).
28.
go back to reference Lee, J.D., Eringen, A.C.: Continuum theory of smectic liquid crystal. J. Chem. Phys. 58(10), 4203–4211 (1973) Lee, J.D., Eringen, A.C.: Continuum theory of smectic liquid crystal. J. Chem. Phys. 58(10), 4203–4211 (1973)
29.
go back to reference Lee, J.D., Eringen, A.C.: Wave propagation in nematic liquid crystals. J. Chem. Phys. 54(12), 5027–5034 (1971) Lee, J.D., Eringen, A.C.: Wave propagation in nematic liquid crystals. J. Chem. Phys. 54(12), 5027–5034 (1971)
30.
go back to reference Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968) Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968)
31.
go back to reference Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17, 113–147 (1964) Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17, 113–147 (1964)
32.
go back to reference Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. Konikl Acad. Wet., Ser. B67, 17 (1964) Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. Konikl Acad. Wet., Ser. B67, 17 (1964)
33.
go back to reference Ilyushin, A.A.: Mechanics of Continuous Media. Moscow State Univ, Publ, Moscow (1990).((in Russian)) Ilyushin, A.A.: Mechanics of Continuous Media. Moscow State Univ, Publ, Moscow (1990).((in Russian))
34.
go back to reference Ilyushin, A.A., Lomakin, V.A.: Moment theories in mechanics of solids. Strength and Plasticity. Moscow, Nauka, pp. 54–60 (1971) Ilyushin, A.A., Lomakin, V.A.: Moment theories in mechanics of solids. Strength and Plasticity. Moscow, Nauka, pp. 54–60 (1971)
35.
go back to reference Lomakin, V.A.: Static Problems in Mechanics of Deformable Solids. Nauka, Moscow (1970).((in Russian)) Lomakin, V.A.: Static Problems in Mechanics of Deformable Solids. Nauka, Moscow (1970).((in Russian))
36.
go back to reference Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16(7), 51–78 (1964) Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16(7), 51–78 (1964)
37.
go back to reference Palmov, V.A.: Basic equations of the theory of asymmetrical elasticity. Prikl. Matem. Mekh. 28(3), 401–408 (1964) Palmov, V.A.: Basic equations of the theory of asymmetrical elasticity. Prikl. Matem. Mekh. 28(3), 401–408 (1964)
38.
go back to reference Palmov, V.A.: On a model of a medium with complex structure. Prikl. Matem. Mekh. 33(4), 768–773 (1969) Palmov, V.A.: On a model of a medium with complex structure. Prikl. Matem. Mekh. 33(4), 768–773 (1969)
39.
go back to reference Savin, G.N.: Foundations of the Plane Problem of the Couple Stress Theory of Elasticity. Izd-vo Kiev. Univ, Kiev (1965).((in Russian)) Savin, G.N.: Foundations of the Plane Problem of the Couple Stress Theory of Elasticity. Izd-vo Kiev. Univ, Kiev (1965).((in Russian))
40.
go back to reference Toupin, R.A.: Theories of elasticity with couple-stresses Arch. Rat. Mech. Anal. 17, 85–112 (1964) Toupin, R.A.: Theories of elasticity with couple-stresses Arch. Rat. Mech. Anal. 17, 85–112 (1964)
41.
go back to reference Truesdell, C., Toupin, R.A.: The classical field theories. Springer, Handbuch der Physik. III/I. Berlin (1960) Truesdell, C., Toupin, R.A.: The classical field theories. Springer, Handbuch der Physik. III/I. Berlin (1960)
42.
go back to reference Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and solids. Springer, New York (1999). Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and solids. Springer, New York (1999).
43.
go back to reference Eringen, A.C.: Nonlinear theory of continuous media, p. 477p. McGraw-Hill, New York (1962) Eringen, A.C.: Nonlinear theory of continuous media, p. 477p. McGraw-Hill, New York (1962)
44.
go back to reference Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int J. Eng. Sci. 10(3), 233–248 (1972) Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int J. Eng. Sci. 10(3), 233–248 (1972)
45.
go back to reference Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964) Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)
46.
go back to reference Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B. 49, 2313 (1994) Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B. 49, 2313 (1994)
47.
go back to reference Kroner, E., Datta, B.K.: Non-local theory of elasticity for a finite inhomogeneous medium—a derivation from lattice theory. In: J. Simmons, R. de Wit (eds.) Fundamental aspects, of dislocation theory (Conference Proc.), vol. 2, pp. 737–746. National Bureau of Standards, Washington (1970) Kroner, E., Datta, B.K.: Non-local theory of elasticity for a finite inhomogeneous medium—a derivation from lattice theory. In: J. Simmons, R. de Wit (eds.) Fundamental aspects, of dislocation theory (Conference Proc.), vol. 2, pp. 737–746. National Bureau of Standards, Washington (1970)
48.
go back to reference Krumhansl, J.A.: Some considerations of the relation between solid state physics and generalized continuum mechanics. Eur. J. Mech. A/Solids 15, 1049–1075 (1996) Krumhansl, J.A.: Some considerations of the relation between solid state physics and generalized continuum mechanics. Eur. J. Mech. A/Solids 15, 1049–1075 (1996)
49.
go back to reference Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Rat. Mech. Anal. 43(1), 36–44 (1971) Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Rat. Mech. Anal. 43(1), 36–44 (1971)
50.
go back to reference Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965) Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965)
51.
go back to reference Bardenhagen, S., Triantafyllidis, N.: Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models. J. Mech. Phys. Solids. 42(1), 111–139 (1994) Bardenhagen, S., Triantafyllidis, N.: Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models. J. Mech. Phys. Solids. 42(1), 111–139 (1994)
52.
go back to reference Lifshits, I.M.: On heat properties of chain and layered structures at low temperatures. J. Exp. Theoret. Phys. 22(4), 475–486 (1952) (in Russian) Lifshits, I.M.: On heat properties of chain and layered structures at low temperatures. J. Exp. Theoret. Phys. 22(4), 475–486 (1952) (in Russian)
53.
go back to reference Kosevich, A.M.: 1999. The Crystal Lattice, Wiley-VCH, Berlin (1999) Kosevich, A.M.: 1999. The Crystal Lattice, Wiley-VCH, Berlin (1999)
54.
go back to reference Leonov, M.Y.: The Mechanics of Deformations and Fracture. Ilim, Frunze (1981).((in Russian)) Leonov, M.Y.: The Mechanics of Deformations and Fracture. Ilim, Frunze (1981).((in Russian))
55.
go back to reference Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002) Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)
56.
go back to reference Slepyan, L.I.: On discrete models in fracture mechanics. Mech. Solids 45(6), 803–814 (2011) Slepyan, L.I.: On discrete models in fracture mechanics. Mech. Solids 45(6), 803–814 (2011)
57.
go back to reference Korotkina, M.R.: Remark about moment stresses in discrete media. Moscow University Mechanics Bulletin. Allerton Press, Inc. no. 5, pp. 103–109 (1969) Korotkina, M.R.: Remark about moment stresses in discrete media. Moscow University Mechanics Bulletin. Allerton Press, Inc. no. 5, pp. 103–109 (1969)
58.
go back to reference Nazarov, S.A., Paukshto, M.V.: Discrete Models and Averaging in Problems of the Elasticity Theory. Izd. Leningr. Univ, Leningrad (1984).((in Russian)) Nazarov, S.A., Paukshto, M.V.: Discrete Models and Averaging in Problems of the Elasticity Theory. Izd. Leningr. Univ, Leningrad (1984).((in Russian))
59.
go back to reference Berinskii, I.E., Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Application of moment interaction to the construction of a stable model of graphite crystal lattice. Mech. Solids 42(5), 663–671 (2007) Berinskii, I.E., Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Application of moment interaction to the construction of a stable model of graphite crystal lattice. Mech. Solids 42(5), 663–671 (2007)
60.
go back to reference Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Derivation of macroscopic relations of the elasticity of complex crystal lattices taking into account the moment interactions at the microlevel. J. Appl. Math. Mech. 71(4), 543–561 (2007) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Derivation of macroscopic relations of the elasticity of complex crystal lattices taking into account the moment interactions at the microlevel. J. Appl. Math. Mech. 71(4), 543–561 (2007)
61.
go back to reference Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)
62.
go back to reference Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010) Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010)
63.
64.
go back to reference Porubov, A.V., Berinskii, I.E.: Nonlinear plane waves in materials having hexagonal internal structure. Int. J. Non-Linear Mech. 67, 27–33 (2014) Porubov, A.V., Berinskii, I.E.: Nonlinear plane waves in materials having hexagonal internal structure. Int. J. Non-Linear Mech. 67, 27–33 (2014)
65.
go back to reference Porubov, A.V., Berintskii, I.E.: Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Math. Mech. Solids 21(1), 94–103 (2016) Porubov, A.V., Berintskii, I.E.: Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Math. Mech. Solids 21(1), 94–103 (2016)
66.
go back to reference Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018) Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018)
67.
go back to reference Porubov, A.V., Osokina, A.E.: On two-dimensional longitudinal nonlinear waves in graphene lattice. In: Berezovski A., Soomere T. (eds.) Applied Wave Mathematics II. Mathematics of Planet Earth, vol. 6, pp. 151–166. Springer, Cham (2019) Porubov, A.V., Osokina, A.E.: On two-dimensional longitudinal nonlinear waves in graphene lattice. In: Berezovski A., Soomere T. (eds.) Applied Wave Mathematics II. Mathematics of Planet Earth, vol. 6, pp. 151–166. Springer, Cham (2019)
68.
go back to reference Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010) Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010)
69.
go back to reference Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, 6245–6260 (2005) Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, 6245–6260 (2005)
70.
go back to reference Vasiliev, A.A, Miroshnichenko, A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008) Vasiliev, A.A, Miroshnichenko, A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008)
71.
go back to reference Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. Euro. J. Mech. A/Solids 46, 96–105 Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. Euro. J. Mech. A/Solids 46, 96–105
72.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583
73.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18 Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18
74.
go back to reference Morozov, N.F., Paukshto, M.V.: On the crack simulation and solution in the lattice. ASME J. Appl. Mech. 58, 290–292 (1991) Morozov, N.F., Paukshto, M.V.: On the crack simulation and solution in the lattice. ASME J. Appl. Mech. 58, 290–292 (1991)
75.
go back to reference Krivtsov, A.M.: Deformation and destruction of microstructured solids. Moscow, Fizmatlit Publ., 304 p. (2007) (in Russian) Krivtsov, A.M.: Deformation and destruction of microstructured solids. Moscow, Fizmatlit Publ., 304 p. (2007) (in Russian)
76.
go back to reference Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Materi. Sci. 7, 82–93 (1996) Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Materi. Sci. 7, 82–93 (1996)
77.
go back to reference Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solid. Part 1,2 J. Elasticity 22, 135–155, 157–183 (1989) Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solid. Part 1,2 J. Elasticity 22, 135–155, 157–183 (1989)
78.
go back to reference Sayadi, M.K., Pouget, J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991) Sayadi, M.K., Pouget, J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991)
79.
go back to reference Askar, A.: A model for coupled rotation-displacement mode of certain molecular crystals. Illustration for KNO 3. J. Phys. Chem. Solids 34, 1901–1907 (1973) Askar, A.: A model for coupled rotation-displacement mode of certain molecular crystals. Illustration for KNO 3. J. Phys. Chem. Solids 34, 1901–1907 (1973)
80.
go back to reference Askar, A.: Molecular crystals and the polar theories of continua: experimential values of material coefficients for KNO 3. Int. J. Eng. Sc. 10, 293–300 (1972) Askar, A.: Molecular crystals and the polar theories of continua: experimential values of material coefficients for KNO 3. Int. J. Eng. Sc. 10, 293–300 (1972)
81.
go back to reference Fisher-Hjalmars, I.: Micropolar phenomena in ordered structures. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 1–33 (1982) Fisher-Hjalmars, I.: Micropolar phenomena in ordered structures. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 1–33 (1982)
82.
go back to reference Fujii, K., Fuka, T., Kondo, H., Ishii, K.: Orientational phase transition in molecular crystal N 2. J. Phys. Soc. Jpn. 66, 125–129 (1997) Fujii, K., Fuka, T., Kondo, H., Ishii, K.: Orientational phase transition in molecular crystal N 2. J. Phys. Soc. Jpn. 66, 125–129 (1997)
83.
go back to reference Berglund, K.: Structural models of micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 35–86 (1982) Berglund, K.: Structural models of micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media. World Scientific, Singapore, pp. 35–86 (1982)
84.
go back to reference Ugodchikov, A.G.: Moment dynamics of a linearly elastic body. Dokl. Phys. 340(1), 56–58 (1995) Ugodchikov, A.G.: Moment dynamics of a linearly elastic body. Dokl. Phys. 340(1), 56–58 (1995)
85.
go back to reference Krylov, A.L., Mazur, N.G., Nikolayevskii, V.N., El’ , G.A.: Gradient-consistent non-linear model of the generation of ultrasound in the propagation of seismic waves. J. Appl. Math. Mech. 57(6), 1057–1066 (1993) Krylov, A.L., Mazur, N.G., Nikolayevskii, V.N., El’ , G.A.: Gradient-consistent non-linear model of the generation of ultrasound in the propagation of seismic waves. J. Appl. Math. Mech. 57(6), 1057–1066 (1993)
86.
go back to reference Krylov, A.L., Nikolayevskii, V.N., El’ , G.A.: Mathematical model of nonlinear generation of ultrasound by seismic waves. Dokl. Akad. Nauk SSSR 318(6), 1340–1345 (1991) Krylov, A.L., Nikolayevskii, V.N., El’ , G.A.: Mathematical model of nonlinear generation of ultrasound by seismic waves. Dokl. Akad. Nauk SSSR 318(6), 1340–1345 (1991)
87.
go back to reference Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996) Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996)
88.
go back to reference Popov, V.L., Psakhie, S.G.: Theoretical aspects of computer simulation of elastic-plastic media on the basis of movable cellular automata I. Homogeneous Media. Phys. Mesomech. 3(1), 17 (2000) Popov, V.L., Psakhie, S.G.: Theoretical aspects of computer simulation of elastic-plastic media on the basis of movable cellular automata I. Homogeneous Media. Phys. Mesomech. 3(1), 17 (2000)
90.
go back to reference Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y.: Movable cellular automata method for simulating materials with mesostructure. Theoret. Appl. Fract. Mech. 37(1–3), 311–334 (2001) Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y.: Movable cellular automata method for simulating materials with mesostructure. Theoret. Appl. Fract. Mech. 37(1–3), 311–334 (2001)
91.
go back to reference Smolin, AYu., Dobrynin, S.A., Psahie, S.G., Roman, N.V.: On rotation in the movable cellular automation method. Phys. Mesomech. 12(3–4), 124–129 (2009) Smolin, AYu., Dobrynin, S.A., Psahie, S.G., Roman, N.V.: On rotation in the movable cellular automation method. Phys. Mesomech. 12(3–4), 124–129 (2009)
92.
go back to reference Smolin, AYu., Smolin, IYu., Eremina, G., Smolina, IYu.: Multiscale simulation of porous ceramics based on movable cellular automaton method. J. Phys. Conf. Ser. 894, 012087 (2017) Smolin, AYu., Smolin, IYu., Eremina, G., Smolina, IYu.: Multiscale simulation of porous ceramics based on movable cellular automaton method. J. Phys. Conf. Ser. 894, 012087 (2017)
93.
go back to reference Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985) Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985)
94.
go back to reference Erofeyev, V.I., Potapov, A.I.: Longitudinal strain waves in nonlinearly elastic media with couple stresses. Int. J. Non-Linear Mech. 28(4), 483–489 (1993) Erofeyev, V.I., Potapov, A.I.: Longitudinal strain waves in nonlinearly elastic media with couple stresses. Int. J. Non-Linear Mech. 28(4), 483–489 (1993)
95.
go back to reference Erofeyev, V.I., Potapov, A.I.: Nonlinear wave processes in elastic media with inner structure. Nonlinear World, vol. 2, pp. 1197–1215. World-Scientific, Singapore (1990) Erofeyev, V.I., Potapov, A.I.: Nonlinear wave processes in elastic media with inner structure. Nonlinear World, vol. 2, pp. 1197–1215. World-Scientific, Singapore (1990)
96.
go back to reference Gendelman, O.V., Manevitch, L.I.: Linear and nonlinear excitations in a polyethylene crystal. Part I. Vibrational modes and linear equations. Macromol. Theor. Simul. 7, 579–589 (1998) Gendelman, O.V., Manevitch, L.I.: Linear and nonlinear excitations in a polyethylene crystal. Part I. Vibrational modes and linear equations. Macromol. Theor. Simul. 7, 579–589 (1998)
97.
go back to reference Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles. One-dimensional model. Phys. Acoust. 47(5), 666–674 (2001) Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles. One-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)
98.
go back to reference Pouget, J.: Lattice dynamics and stability of modulated-strain structures for elastic phase transitions in alloys. Phys. Rev. B. 48(2), 864–875 (1993) Pouget, J.: Lattice dynamics and stability of modulated-strain structures for elastic phase transitions in alloys. Phys. Rev. B. 48(2), 864–875 (1993)
99.
go back to reference Sargsyan, A.H., Sargsyan, S.H.: Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations. J. Sound Vib. 333(18), 4354–4375 (2014) Sargsyan, A.H., Sargsyan, S.H.: Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations. J. Sound Vib. 333(18), 4354–4375 (2014)
100.
go back to reference Sargsyan, S.H.: Micropolar beam model for nanocrystalline material consisting of linear chains of atoms. Phys. Mesomech. 20(4), 425–431 (2017) Sargsyan, S.H.: Micropolar beam model for nanocrystalline material consisting of linear chains of atoms. Phys. Mesomech. 20(4), 425–431 (2017)
101.
go back to reference Sargsyan, S.H., Sargsyan, A.A.: General dynamic theory of micropolar elastic thin plates with free rotation and special features of their natural oscillations. Acoust. Phys. 57(4), 473–481 (2011) Sargsyan, S.H., Sargsyan, A.A.: General dynamic theory of micropolar elastic thin plates with free rotation and special features of their natural oscillations. Acoust. Phys. 57(4), 473–481 (2011)
102.
go back to reference Gross, E.F.: Light scattering and relaxation phenomena in liquids Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian) Gross, E.F.: Light scattering and relaxation phenomena in liquids Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian)
103.
go back to reference Bernal, J.D., Tamm, G.R.: Zero point energy and physical properties of H 2O and D 2O. Nature 135, 229 (1935) Bernal, J.D., Tamm, G.R.: Zero point energy and physical properties of H 2O and D 2O. Nature 135, 229 (1935)
104.
go back to reference Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP. 16(1), 53–59 (1946) Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP. 16(1), 53–59 (1946)
105.
go back to reference Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976).((in Russian)) Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976).((in Russian))
106.
go back to reference Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-, meta- and orthoiodiobenzenes. JETP 20, 293–296 (1950) Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-, meta- and orthoiodiobenzenes. JETP 20, 293–296 (1950)
107.
go back to reference Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Soviet Phys. Tech. Phys. 28, 2255 (1958) Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Soviet Phys. Tech. Phys. 28, 2255 (1958)
108.
go back to reference Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian)
109.
go back to reference Erofeyev, V.I., Rodyushkin, V.M.: Observation of the dispersion of elastic waves in a granular composite and a mathematical model for its description. Sov. Phys. Acoust. 38(6), 611–612 (1992) Erofeyev, V.I., Rodyushkin, V.M.: Observation of the dispersion of elastic waves in a granular composite and a mathematical model for its description. Sov. Phys. Acoust. 38(6), 611–612 (1992)
110.
go back to reference Potapov, A.I., Rodyushkin, V.M.: Experimental investigation of strain waves in materials with microstructure. Acoust. Phys. 47(1), 347–352 (2001) Potapov, A.I., Rodyushkin, V.M.: Experimental investigation of strain waves in materials with microstructure. Acoust. Phys. 47(1), 347–352 (2001)
111.
go back to reference Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, 274 p. (2001) Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, 274 p. (2001)
112.
go back to reference Lyamov, V.E.: Polarization Effects and Anisotropy of the Interaction of Acoustic Waves in Crystals. Mosk. Gos. Univ., Moscow, 224 p. (1983) (in Russian) Lyamov, V.E.: Polarization Effects and Anisotropy of the Interaction of Acoustic Waves in Crystals. Mosk. Gos. Univ., Moscow, 224 p. (1983) (in Russian)
113.
go back to reference Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave Dynamics of Generalized Continua. Advanced Structured Materials, vol. 24, 274 p. Springer, Berlin, Heidelberg (2016) Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave Dynamics of Generalized Continua. Advanced Structured Materials, vol. 24, 274 p. Springer, Berlin, Heidelberg (2016)
114.
go back to reference Belyaeva, IYu., Zaitsev, VYu., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993) Belyaeva, IYu., Zaitsev, VYu., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993)
115.
go back to reference Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999) Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999)
116.
go back to reference Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003) Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003)
117.
go back to reference Nazarov, V.E., Radostin, A.V. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids. Wiley, 251 p. (2015) Nazarov, V.E., Radostin, A.V. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids. Wiley, 251 p. (2015)
118.
go back to reference Qiu, C., Zhang, X., Liu, Z.: Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys. Rev. B 71, 054302–054311 (2005) Qiu, C., Zhang, X., Liu, Z.: Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys. Rev. B 71, 054302–054311 (2005)
119.
go back to reference Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State 39, 118–124 (1997) Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State 39, 118–124 (1997)
120.
go back to reference Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996) Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996)
121.
go back to reference Potapov, A.I., Pavlov, I.S., Gorshkov, K.A., Maugin, G.A.: Nonlinear interactions of solitary waves in a 2D lattice. Wave Motion 34(1), 83–95 (2001) Potapov, A.I., Pavlov, I.S., Gorshkov, K.A., Maugin, G.A.: Nonlinear interactions of solitary waves in a 2D lattice. Wave Motion 34(1), 83–95 (2001)
122.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic Identification of Nanocrystalline Media. J. Sound Vib. 322(3), 564–580 (2009) Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic Identification of Nanocrystalline Media. J. Sound Vib. 322(3), 564–580 (2009)
123.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010) Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010)
124.
go back to reference Ghoniem, N.M., et al.: Multiscale modelling of nanomechanics and micromechanics: an over-view. Phil. Mag. 83(31–34), 3475–3528 (2003) Ghoniem, N.M., et al.: Multiscale modelling of nanomechanics and micromechanics: an over-view. Phil. Mag. 83(31–34), 3475–3528 (2003)
125.
go back to reference Cleland, A.N.: Foundations of nanomechanics: from solid-state theory to device applications. Springer, Berlin (2003) Cleland, A.N.: Foundations of nanomechanics: from solid-state theory to device applications. Springer, Berlin (2003)
126.
go back to reference Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Inc. (2005) Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Inc. (2005)
127.
go back to reference Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000) Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000)
128.
go back to reference Davydov, A.S.: Quantum Mechanics, 637 p. In: Dirk ter Haar (ed.). Pergamon Press (1976) Davydov, A.S.: Quantum Mechanics, 637 p. In: Dirk ter Haar (ed.). Pergamon Press (1976)
129.
go back to reference Rieth, M.: Nano-Engineering in Science and Technology. An Introduction to the World of Nano-Design. World Scientific, 151 p. (2003) Rieth, M.: Nano-Engineering in Science and Technology. An Introduction to the World of Nano-Design. World Scientific, 151 p. (2003)
130.
go back to reference Golovneva, E.I., Golovnev, I.F., Fomin, V.M.: Peculiarities of application of continuum mechanics methods to the description of nano-structures. Phys. Mesomech. 8(5), 41–48 (2005) Golovneva, E.I., Golovnev, I.F., Fomin, V.M.: Peculiarities of application of continuum mechanics methods to the description of nano-structures. Phys. Mesomech. 8(5), 41–48 (2005)
132.
go back to reference Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123–182 (1965) Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123–182 (1965)
133.
go back to reference Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968) Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968)
134.
go back to reference Li, C., Chou, T.W.: Structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003) Li, C., Chou, T.W.: Structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)
135.
go back to reference Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov I.S. Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019/High Gradient Materials and Related Generalized Continua. Springer Nature Switzerland AG. Part of Springer, Cham, Switzerland, pp. 55–68. Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov I.S. Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019/High Gradient Materials and Related Generalized Continua. Springer Nature Switzerland AG. Part of Springer, Cham, Switzerland, pp. 55–68.
136.
go back to reference Moshev, V.V., Garishin, O.K.: Structural mechanics of dispersedly filled elastomeric composites. Uspekhi Mekh. 3(2), 3–36 (2005) Moshev, V.V., Garishin, O.K.: Structural mechanics of dispersedly filled elastomeric composites. Uspekhi Mekh. 3(2), 3–36 (2005)
137.
go back to reference Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010) Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010)
138.
go back to reference Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010) Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)
139.
go back to reference Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008) Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008)
140.
go back to reference Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006) Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)
141.
go back to reference Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vib. 384, 163–176 (2016) Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vib. 384, 163–176 (2016)
142.
go back to reference Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society. Issue 10. Moscow: GEOS, pp. 9–16 (2009) (in Russian) Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society. Issue 10. Moscow: GEOS, pp. 9–16 (2009) (in Russian)
143.
go back to reference Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystals: Microscopic approach. Phys. Rev. B. 33(9), 6304–6325 (1986) Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystals: Microscopic approach. Phys. Rev. B. 33(9), 6304–6325 (1986)
146.
go back to reference Vasiliev, A.A., Pavlov, I.S.: Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012079 (2018) Vasiliev, A.A., Pavlov, I.S.: Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012079 (2018)
147.
go back to reference Shermergor, T.D.: Theory of Elasticity of Micro-Inhomogeneous Media. Nauka, Moscow (1977).((in Russian)) Shermergor, T.D.: Theory of Elasticity of Micro-Inhomogeneous Media. Nauka, Moscow (1977).((in Russian))
148.
go back to reference Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000) Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)
149.
go back to reference Solyaev, Yu., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018) Solyaev, Yu., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018)
150.
go back to reference Gulyaev, Yu.V., Lagar’kov, A.N., Nikitov, S.A.: Metamaterials: basic research and potential applications. Herald Russ. Acad. Sci. 78, 268–278 (2008) Gulyaev, Yu.V., Lagar’kov, A.N., Nikitov, S.A.: Metamaterials: basic research and potential applications. Herald Russ. Acad. Sci. 78, 268–278 (2008)
151.
go back to reference Vityaz, P.A., Shelekhina, V.M., Prokhorov, O.A., Gaponenko, N.V.: Preparation of pseudocrystalline materials based on silica. Proc. Natl. Acad. Sci. Belarus. Physical-Technical Ser. 1, 16–20 (2002) (in Russian) Vityaz, P.A., Shelekhina, V.M., Prokhorov, O.A., Gaponenko, N.V.: Preparation of pseudocrystalline materials based on silica. Proc. Natl. Acad. Sci. Belarus. Physical-Technical Ser. 1, 16–20 (2002) (in Russian)
152.
go back to reference Sidorov, L.N., Yurovskaya, M.A., Borschevskii, A.Y., Trushkov, I.V., Ioffe, I.N.: Fullerenes . Ekzamen, Moscow, 690 p. (2005) (in Russian) Sidorov, L.N., Yurovskaya, M.A., Borschevskii, A.Y., Trushkov, I.V., Ioffe, I.N.: Fullerenes . Ekzamen, Moscow, 690 p. (2005) (in Russian)
153.
go back to reference Suzdalev, I.P.: Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. KomKniga, Moscow (2006).((in Russian)) Suzdalev, I.P.: Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. KomKniga, Moscow (2006).((in Russian))
154.
go back to reference Morozov, A.N., Skripkin, A.V.: Behaviour of polymer chains and structures under the influence of random forces. Nonlinear World. 13(7), 33–37 (2015) ((in Russian)) Morozov, A.N., Skripkin, A.V.: Behaviour of polymer chains and structures under the influence of random forces. Nonlinear World. 13(7), 33–37 (2015) ((in Russian))
155.
go back to reference Blank, V.D., Levin, V.M., Prokhorov, V.M., Buga, S.G., Dubitskii, G.A., Serebryanaya, N.R.: Elastic properties of ultrahard fullerites. J. Exp. Theoret. Phys. 87, 741–746 (1998) Blank, V.D., Levin, V.M., Prokhorov, V.M., Buga, S.G., Dubitskii, G.A., Serebryanaya, N.R.: Elastic properties of ultrahard fullerites. J. Exp. Theoret. Phys. 87, 741–746 (1998)
156.
go back to reference Kulbachinskii, V.A., Buga, S.G., Blank, V.D., Dubitsky, G.A., Serebryanaya, N.R.: Superconducting superhard composites based on C 60, diamond or boron nitride and MgB 2. J. Nanostruct. Polym. Nanocompos. 6(4), 119–122 (2010) Kulbachinskii, V.A., Buga, S.G., Blank, V.D., Dubitsky, G.A., Serebryanaya, N.R.: Superconducting superhard composites based on C 60, diamond or boron nitride and MgB 2. J. Nanostruct. Polym. Nanocompos. 6(4), 119–122 (2010)
157.
go back to reference Kobelev, N.P., Soifer, Ya.M., Bashkin, I.O., Moravski, A.P.: Elastic and dissipative properties of C 60 fullerite. Nanostruct. Mater. 6(5), 909–912 (1995) Kobelev, N.P., Soifer, Ya.M., Bashkin, I.O., Moravski, A.P.: Elastic and dissipative properties of C 60 fullerite. Nanostruct. Mater. 6(5), 909–912 (1995)
158.
go back to reference Yildirim, T., Harris, A.B.: Lattice dynamics of solids C 60. Phys. Rev. B 46, 7878–7896 (1992) Yildirim, T., Harris, A.B.: Lattice dynamics of solids C 60. Phys. Rev. B 46, 7878–7896 (1992)
159.
go back to reference Mikhalchenko, V.P., Motskin, V.V.: On elastic properties of fullerite C 60 f.c.c. phase. J. Thermoelectricity 3, 31–44 (2004) Mikhalchenko, V.P., Motskin, V.V.: On elastic properties of fullerite C 60 f.c.c. phase. J. Thermoelectricity 3, 31–44 (2004)
160.
go back to reference Koch, E.: Enhancing T C in field-doped fullerenes by applying uniaxial stress. Phys. Rev. B. 66, 081401 (2002) Koch, E.: Enhancing T C in field-doped fullerenes by applying uniaxial stress. Phys. Rev. B. 66, 081401 (2002)
161.
go back to reference Kobelev, N.P., Nikolaev, R.K., Soifer, Ya.M., Khasanov, S.S.: Elastic moduli of single-crystal C 60. Phys. Solid State 40(1), 154–156 (1998) Kobelev, N.P., Nikolaev, R.K., Soifer, Ya.M., Khasanov, S.S.: Elastic moduli of single-crystal C 60. Phys. Solid State 40(1), 154–156 (1998)
162.
go back to reference Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: Theory and Applications. The Johns Hopkins University Press, Baltimore, MD (1999) Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: Theory and Applications. The Johns Hopkins University Press, Baltimore, MD (1999)
163.
go back to reference Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990).((in Russian)) Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990).((in Russian))
165.
go back to reference Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics, p. 459. Blackie Academic and Professional, London (1995) Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics, p. 459. Blackie Academic and Professional, London (1995)
166.
go back to reference Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994) Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994)
167.
go back to reference Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME. J. Appl. Mech. 48(2), 339–344 (1981) Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME. J. Appl. Mech. 48(2), 339–344 (1981)
168.
go back to reference Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p. (2012) Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p. (2012)
169.
go back to reference Lippman, H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11) Part 1, 753–762 (1995) Lippman, H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11) Part 1, 753–762 (1995)
170.
go back to reference Bobrovnitskii, Yu.I.: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014) Bobrovnitskii, Yu.I.: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014)
171.
go back to reference Bobrovnitskii, Yu.I.: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015) Bobrovnitskii, Yu.I.: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015)
172.
go back to reference Bobrovnitskii, Yu.I., Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018) Bobrovnitskii, Yu.I., Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018)
173.
go back to reference Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016) Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016)
174.
go back to reference Fedotovskii, V.S.: A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 64(5), 548–554 (2018) Fedotovskii, V.S.: A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 64(5), 548–554 (2018)
175.
go back to reference Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017) Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017)
176.
go back to reference Zhu, S., Zhang, X.: Metamaterials: artificial materials beyond nature. Natl. Sci. Rev. 5(2), 131 (2018) Zhu, S., Zhang, X.: Metamaterials: artificial materials beyond nature. Natl. Sci. Rev. 5(2), 131 (2018)
177.
go back to reference Solyaev, Yu., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mech. Thermodyn. 31, 1099–1107 (2019) Solyaev, Yu., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mech. Thermodyn. 31, 1099–1107 (2019)
178.
go back to reference Altenbach, H., Maugin, G.A., Erofeev, V.I. (eds.): Mechanics of Generalized Continua. Springer, Berlin, Heidelberg, 350 p. (2011) Altenbach, H., Maugin, G.A., Erofeev, V.I. (eds.): Mechanics of Generalized Continua. Springer, Berlin, Heidelberg, 350 p. (2011)
179.
go back to reference Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua. One Hundred Years After the Cosserats. Springer, 337 p. (2010) Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua. One Hundred Years After the Cosserats. Springer, 337 p. (2010)
180.
go back to reference Vakhnenko, V.A.: Diagnosis of the properties of a structurized medium by long nonlinear waves. J. Appl. Mech. Tech. Phys. 37(5), 643–649 (1996) Vakhnenko, V.A.: Diagnosis of the properties of a structurized medium by long nonlinear waves. J. Appl. Mech. Tech. Phys. 37(5), 643–649 (1996)
181.
go back to reference Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010) Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010)
182.
go back to reference Nikitina, N.E.: Acoustoelasticity. Experience of Practical Application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian) Nikitina, N.E.: Acoustoelasticity. Experience of Practical Application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian)
183.
go back to reference Erofeev, V.I., Pavlov, I.S.: Rotational waves in microstructured materials. In: dell’Isola, F., Eremeyev, V.A., Porubov, A.V. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol. 87, pp. 103–124. Springer, Cham (2018) Erofeev, V.I., Pavlov, I.S.: Rotational waves in microstructured materials. In: dell’Isola, F., Eremeyev, V.A., Porubov, A.V. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol. 87, pp. 103–124. Springer, Cham (2018)
184.
go back to reference Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge (1927) Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge (1927)
185.
go back to reference Broberg, K.B.: The cell model of materials. Comput. Mech. 19, 447–452 (1997) Broberg, K.B.: The cell model of materials. Comput. Mech. 19, 447–452 (1997)
186.
go back to reference Gendelman, O.V., Manevitch, L.I.: The description of polyethylene crystal as a continuum with internal degrees of freedom. Int. J. Solids Struct. 33(12), 1781–1798 (1996) Gendelman, O.V., Manevitch, L.I.: The description of polyethylene crystal as a continuum with internal degrees of freedom. Int. J. Solids Struct. 33(12), 1781–1798 (1996)
187.
go back to reference Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007) Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007)
188.
go back to reference Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow (1965); Plenum Press, New York (1968) Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow (1965); Plenum Press, New York (1968)
189.
go back to reference Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005) Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005)
190.
go back to reference Erofeev, V.I., Malkhanov, A.O., Zemlyanukhin, A.I., Catcon, V.M.: Nonlinear magnetoelastic waves in a plate. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures. Non-classical Theories and Applications. Advanced Structured Materials, vol. 15, pp. 125–134. Springer, Heidelberg, Dordrecht, London, New York (2011) Erofeev, V.I., Malkhanov, A.O., Zemlyanukhin, A.I., Catcon, V.M.: Nonlinear magnetoelastic waves in a plate. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures. Non-classical Theories and Applications. Advanced Structured Materials, vol. 15, pp. 125–134. Springer, Heidelberg, Dordrecht, London, New York (2011)
191.
go back to reference Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Amsterdam (1988) Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Amsterdam (1988)
Metadata
Title
Theoretical Basis of the Structural Modeling Method
Authors
Vladimir I. Erofeev
Igor S. Pavlov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_1

Premium Partners