Skip to main content
Top
Published in:

03-08-2024

Theoretical calculations of the optoelectronic properties of a penta-graphene monolayer: study of many-body effects

Authors: B. Minaie, S. A. Ketabi, J. M. De Sousa

Published in: Journal of Computational Electronics | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on density functional theory (DFT), the GW approximation and Bethe–Salpeter equation (BSE), we performed a theoretical calculation to study the electronic and optical properties of penta-graphene (PG) monolayers. Our findings reveal that PG behaves as a semiconductor with an indirect band gap of 2.27 eV at the DFT-GGA level. By incorporating the GW approximation based on many-body perturbation theory, we observed an increase in the band gap, resulting in a quasi-direct band gap of 4.53 eV. Furthermore, we employed the G0W0-RPA and G0W0-BSE approximations to compute the optical spectra of the monolayer in the absence and in the presence of electron–hole interaction, respectively. The results indicate that the inclusion of electron–hole interactions leads to a red-shift of the absorption spectrum towards lower energies compared to the spectrum obtained from the G0W0-RPA approximation. Notably, the optical absorption spectra are predominantly governed by the first bound exciton, characterized by a significant binding energy of 2.07 eV. Our results suggest that the PG monolayer, with its wider band gap and enhanced excitonic effects, is potentially a suitable candidate for the design and fabrication of optoelectronic components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Fullerenes. J. Mater. Res. 8, 2054 (1993)CrossRef Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Fullerenes. J. Mater. Res. 8, 2054 (1993)CrossRef
2.
3.
go back to reference Li, Y., et al.: Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572 (2014)CrossRef Li, Y., et al.: Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572 (2014)CrossRef
4.
go back to reference Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef
5.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRef
6.
go back to reference Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75 (2017)CrossRef Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75 (2017)CrossRef
7.
go back to reference Rao, C.E.E., Sood, A.E., Subrahmanyam, K.E., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009)CrossRef Rao, C.E.E., Sood, A.E., Subrahmanyam, K.E., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009)CrossRef
8.
go back to reference Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef
9.
go back to reference Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRef Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRef
10.
go back to reference Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano lett. 8, 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano lett. 8, 902–907 (2008)CrossRef
11.
go back to reference Grantab, R., Shenoy, V.B., Ruoff, R.S.: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946 (2010)CrossRef Grantab, R., Shenoy, V.B., Ruoff, R.S.: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946 (2010)CrossRef
12.
go back to reference Sahu, S., Rout, G.C.: Band gap opening in graphene: a short theoretical study. Int. Nano Lett. 7, 81 (2017)CrossRef Sahu, S., Rout, G.C.: Band gap opening in graphene: a short theoretical study. Int. Nano Lett. 7, 81 (2017)CrossRef
13.
go back to reference Silvestrelli, P.L., Ambrosetti, A.: Bandgap opening in graphene using alkali ions by first principles. Appl. Phys. Lett. 113, 211603 (2018)CrossRef Silvestrelli, P.L., Ambrosetti, A.: Bandgap opening in graphene using alkali ions by first principles. Appl. Phys. Lett. 113, 211603 (2018)CrossRef
14.
go back to reference Park, J.S., Choi, H.J.: Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef Park, J.S., Choi, H.J.: Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef
15.
go back to reference Khoa, D.Q., et al.: Opening a band gap in graphene by C–C bond alternation: a tight binding approach. Mater. Res. Express. 6, 045605 (2019)CrossRef Khoa, D.Q., et al.: Opening a band gap in graphene by C–C bond alternation: a tight binding approach. Mater. Res. Express. 6, 045605 (2019)CrossRef
16.
go back to reference Jariwala, D., Srivastava, A., Ajayan, P.M.: Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11, 6621 (2011)CrossRef Jariwala, D., Srivastava, A., Ajayan, P.M.: Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11, 6621 (2011)CrossRef
17.
go back to reference Prinzbach, H., et al.: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60 (2000)CrossRef Prinzbach, H., et al.: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60 (2000)CrossRef
18.
go back to reference Zhang, S., et al.: Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112, 2372 (2015)CrossRef Zhang, S., et al.: Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112, 2372 (2015)CrossRef
19.
go back to reference Tien, N.T., Thao, P.T.B., Phuc, V.T., Ahuja, R.: Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons. J. Phys. Chem. Solids 146, 109528 (2020)CrossRef Tien, N.T., Thao, P.T.B., Phuc, V.T., Ahuja, R.: Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons. J. Phys. Chem. Solids 146, 109528 (2020)CrossRef
20.
go back to reference Yu, Z.G., Zhang, Y.W.: A comparative density functional study on electrical properties of layered penta-graphene. J. Appl. Phys. 118, 165706 (2015)CrossRef Yu, Z.G., Zhang, Y.W.: A comparative density functional study on electrical properties of layered penta-graphene. J. Appl. Phys. 118, 165706 (2015)CrossRef
21.
go back to reference Li, X., et al.: Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination. Phys. Chem. Chem. Phys. 18, 14191 (2016)CrossRef Li, X., et al.: Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination. Phys. Chem. Chem. Phys. 18, 14191 (2016)CrossRef
22.
go back to reference Xu, W., Zhang, G., Li, B.: Thermal conductivity of penta-graphene from molecular dynamics study. J. chem. Phys. 143, 154703 (2015)CrossRef Xu, W., Zhang, G., Li, B.: Thermal conductivity of penta-graphene from molecular dynamics study. J. chem. Phys. 143, 154703 (2015)CrossRef
23.
go back to reference Wang, Z., et al.: Electronic and optical properties of novel carbon allotropes. Carbon 101, 77 (2016)CrossRef Wang, Z., et al.: Electronic and optical properties of novel carbon allotropes. Carbon 101, 77 (2016)CrossRef
24.
go back to reference Sun, H., Mukherjee, S., Singh, C.V.: Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736 (2016)CrossRef Sun, H., Mukherjee, S., Singh, C.V.: Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736 (2016)CrossRef
25.
go back to reference Stauber, T., Beltrán, J.I., Schliemann, J.: Tight-binding approach to penta-graphene. Sci. Rep. 6, 22672 (2016)CrossRef Stauber, T., Beltrán, J.I., Schliemann, J.: Tight-binding approach to penta-graphene. Sci. Rep. 6, 22672 (2016)CrossRef
26.
go back to reference Jia, H.J., et al.: Piezoelectric and polarized enhancement by hydrofluorination of penta-graphene. Phys. Chem. Chem. Phys. 20, 26288 (2018)CrossRef Jia, H.J., et al.: Piezoelectric and polarized enhancement by hydrofluorination of penta-graphene. Phys. Chem. Chem. Phys. 20, 26288 (2018)CrossRef
27.
go back to reference Einollahzadeh, H., Dariani, R.S., Fazeli, S.M.: Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations. Solid State Commun. 229, 1 (2016)CrossRef Einollahzadeh, H., Dariani, R.S., Fazeli, S.M.: Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations. Solid State Commun. 229, 1 (2016)CrossRef
28.
go back to reference Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef
29.
go back to reference Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996)CrossRef Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996)CrossRef
30.
go back to reference Perdew, J.P., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)CrossRef
31.
go back to reference Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)CrossRef Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)CrossRef
32.
go back to reference Aulbur, W.G., Jonsson, L., Wilkins, J.W.: Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (2000)CrossRef Aulbur, W.G., Jonsson, L., Wilkins, J.W.: Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (2000)CrossRef
33.
go back to reference Körbel, S., et al.: Benchmark many-body GW and Bethe-Salpeter calculations for small transition metal molecules. J. Chem. Theory Comput. 10, 3934 (2014)CrossRef Körbel, S., et al.: Benchmark many-body GW and Bethe-Salpeter calculations for small transition metal molecules. J. Chem. Theory Comput. 10, 3934 (2014)CrossRef
34.
go back to reference Aryasetiawan, F., Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237 (1998)CrossRef Aryasetiawan, F., Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237 (1998)CrossRef
35.
go back to reference Godby, R.W., Needs, R.J.: Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169 (1989)CrossRef Godby, R.W., Needs, R.J.: Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169 (1989)CrossRef
36.
go back to reference Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002)CrossRef Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002)CrossRef
37.
go back to reference Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927 (2000)CrossRef Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927 (2000)CrossRef
38.
go back to reference Marini, A., Hogan, C., Grüning, M., Varsano, D.: Yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392 (2009)CrossRef Marini, A., Hogan, C., Grüning, M., Varsano, D.: Yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392 (2009)CrossRef
39.
go back to reference Ashhadi, M., Ketabi, S.A.: Quasi-particle energies and excitonic effects in bilayer of hexagonal boron nitride. Solid State Commun. 187, 1 (2014)CrossRef Ashhadi, M., Ketabi, S.A.: Quasi-particle energies and excitonic effects in bilayer of hexagonal boron nitride. Solid State Commun. 187, 1 (2014)CrossRef
40.
go back to reference Wei, W., Jacob, T.: Strong charge-transfer excitonic effects in C 4 H-type hydrogenated graphene. Phys. Rev. B 86, 165444 (2012)CrossRef Wei, W., Jacob, T.: Strong charge-transfer excitonic effects in C 4 H-type hydrogenated graphene. Phys. Rev. B 86, 165444 (2012)CrossRef
41.
go back to reference Shahrokhi, M.: Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377 (2016)CrossRef Shahrokhi, M.: Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377 (2016)CrossRef
42.
go back to reference Ghojavand, A., et al.: Ab initio analysis of structural and electronic properties and excitonic optical responses of eight Ge-based 2D materials. J. Appl. Phys. 127, 214301 (2020)CrossRef Ghojavand, A., et al.: Ab initio analysis of structural and electronic properties and excitonic optical responses of eight Ge-based 2D materials. J. Appl. Phys. 127, 214301 (2020)CrossRef
43.
go back to reference Berdiyorov, G.R., Madjet, M.E.A.: First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC 2 and penta-CN 2. RSC Adv. 6, 50867 (2016)CrossRef Berdiyorov, G.R., Madjet, M.E.A.: First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC 2 and penta-CN 2. RSC Adv. 6, 50867 (2016)CrossRef
Metadata
Title
Theoretical calculations of the optoelectronic properties of a penta-graphene monolayer: study of many-body effects
Authors
B. Minaie
S. A. Ketabi
J. M. De Sousa
Publication date
03-08-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02208-y