Skip to main content
Top
Published in: Journal of Electronic Materials 9/2021

14-06-2021 | Original Research Article

Theoretical Insights on Bandgap Engineering for Nanoribbons of the 2D Materials Family with Co-Adatoms

Authors: Keyur Sangani, Ankur Pandya, Prafulla K. Jha

Published in: Journal of Electronic Materials | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The bandgap tuning of two-dimensional (2D) materials is a vital step for their potential applications in the realm of nanoelectronics, optoelectronics, and spintronics. In this context, the bandgap of cobalt (Co)-adsorbed nanoribbons of novel 2D materials (for instance, graphene (GNR), h-BN (BNNR), silicene (SiNR), germanene (GeNR), stanene (SnNR), and phosphorene (PNR)) is investigated under the effect of a transverse magnetic field via an acoustical deformation potential (ADP) scattering mechanism. Bandgaps ranging from 1.10 eV to 1.42 eV were obtained for Co-adsorbed 2D nanoribbons, which display semiconducting behaviour. In addition to that, investigating the impact of temperature on the bandgap revealed an anomalous temperature dependence of the bandgap. The outcomes of the present work would be advantageous for developing transition metal (TM)-adsorbed-nanoribbon-based nanoelectronic and spintronic devices, wherein controlling their bandgap by employing a magnetic field is a useful tool for advancing nanoribbon-based technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Y.P. Feng, L. Shen, M. Yang, A.Z. Wang, M.G. Zeng, Q.Y. Wu, S. Chintalapati, and C.R. Chang, WIRES Comput. Mol. Sci. 7, e1313 (2017).CrossRef Y.P. Feng, L. Shen, M. Yang, A.Z. Wang, M.G. Zeng, Q.Y. Wu, S. Chintalapati, and C.R. Chang, WIRES Comput. Mol. Sci. 7, e1313 (2017).CrossRef
4.
go back to reference L. Zhang, H. Zhao, W.X. Ji, C.W. Zhang, P. Li, and P.J. Wang, Chem. Phys. Lett. 712, 78 (2018).CrossRef L. Zhang, H. Zhao, W.X. Ji, C.W. Zhang, P. Li, and P.J. Wang, Chem. Phys. Lett. 712, 78 (2018).CrossRef
5.
go back to reference P. Vishnoi, K. Pramoda, and C.N.R. Rao, J. Res. 5, 1 (2019). P. Vishnoi, K. Pramoda, and C.N.R. Rao, J. Res. 5, 1 (2019).
6.
go back to reference N.B. Singh, and S.K. Shukla, Properties of 2D nanomaterials; Two-Dimensional Nanostructures for Biomedical Technology (Elsevier, 2020), pp. 73–100.CrossRef N.B. Singh, and S.K. Shukla, Properties of 2D nanomaterials; Two-Dimensional Nanostructures for Biomedical Technology (Elsevier, 2020), pp. 73–100.CrossRef
7.
go back to reference K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto, Science 353, aac9439 (2016).CrossRef K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto, Science 353, aac9439 (2016).CrossRef
8.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666 (2004).CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666 (2004).CrossRef
9.
go back to reference K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Science 315, 1379 (2007).CrossRef K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Science 315, 1379 (2007).CrossRef
10.
go back to reference A. Shukla, P. Dhanasekaran, N. Nagaraju, S.D. Bhat, and V.K. Pillai, Electrochim. Acta 297, 267 (2019).CrossRef A. Shukla, P. Dhanasekaran, N. Nagaraju, S.D. Bhat, and V.K. Pillai, Electrochim. Acta 297, 267 (2019).CrossRef
11.
go back to reference S.M. Mousavi, S. Soroshnia, S.A. Hashemi, A. Babapoor, Y. Ghasemi, A. Savardashtaki, and A.M. Amani, Drug Metab. Rev. 51, 91 (2019).CrossRef S.M. Mousavi, S. Soroshnia, S.A. Hashemi, A. Babapoor, Y. Ghasemi, A. Savardashtaki, and A.M. Amani, Drug Metab. Rev. 51, 91 (2019).CrossRef
13.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubono, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubono, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRef
14.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).CrossRef
15.
go back to reference S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Small 11, 640 (2014).CrossRef S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Small 11, 640 (2014).CrossRef
17.
go back to reference A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, and A.K. Geim, Nano Lett. 11, 2396 (2011).CrossRef A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, and A.K. Geim, Nano Lett. 11, 2396 (2011).CrossRef
19.
go back to reference Y. Lin, T.V. Williams, and J.W. Connell, J. Phys. Chem. Lett. 1, 277 (2010).CrossRef Y. Lin, T.V. Williams, and J.W. Connell, J. Phys. Chem. Lett. 1, 277 (2010).CrossRef
20.
go back to reference B.J. Feng, Z.J. Ding, S. Meng, Y.G. Yao, X.Y. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012).CrossRef B.J. Feng, Z.J. Ding, S. Meng, Y.G. Yao, X.Y. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012).CrossRef
21.
go back to reference P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, and G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012).CrossRef P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, and G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012).CrossRef
22.
go back to reference E. Bianco, S. Butler, S.S. Jiang, O.D. Restrepo, W. Windl, and J.E. Goldberger, ACS Nano 7, 4414 (2013).CrossRef E. Bianco, S. Butler, S.S. Jiang, O.D. Restrepo, W. Windl, and J.E. Goldberger, ACS Nano 7, 4414 (2013).CrossRef
23.
go back to reference F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, and J.F. Jia, Nat. Mater. 14, 1020 (2015).CrossRef F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, and J.F. Jia, Nat. Mater. 14, 1020 (2015).CrossRef
24.
25.
go back to reference S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angew. Chem. Int. Ed. 54, 3112 (2015).CrossRef S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angew. Chem. Int. Ed. 54, 3112 (2015).CrossRef
26.
go back to reference J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Nat. Commun. 7, 13352 (2016).CrossRef J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Nat. Commun. 7, 13352 (2016).CrossRef
27.
28.
go back to reference M. Morales Masis, S.D. Wolf, R.W. Robinson, J.W. Ager, and C. Ballif, Adv. Electr. Mater. 3, 1600529 (2017).CrossRef M. Morales Masis, S.D. Wolf, R.W. Robinson, J.W. Ager, and C. Ballif, Adv. Electr. Mater. 3, 1600529 (2017).CrossRef
29.
go back to reference S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Angew. Chem. Int. Ed. 55, 1666 (2016).CrossRef S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Angew. Chem. Int. Ed. 55, 1666 (2016).CrossRef
30.
go back to reference D.W. Boukhvalov, and M.I. Katsnelson, J. Phys. Condens. Matter 21, 344205 (2009).CrossRef D.W. Boukhvalov, and M.I. Katsnelson, J. Phys. Condens. Matter 21, 344205 (2009).CrossRef
32.
go back to reference Z.H. Ni, T. Yu, Y. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, ACS Nano 2, 2301 (2008).CrossRef Z.H. Ni, T. Yu, Y. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, ACS Nano 2, 2301 (2008).CrossRef
34.
go back to reference M.Y. Han, B. Ozyllmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).CrossRef M.Y. Han, B. Ozyllmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).CrossRef
35.
36.
go back to reference S. Chowdhury, S. Baidya, D. Nafday, S. Haldar, M. Kabir, B. Sanyal, T. SahaDasgupta, D. Jana, and A. Mookerjee, Phys. E. 61, 191 (2014).CrossRef S. Chowdhury, S. Baidya, D. Nafday, S. Haldar, M. Kabir, B. Sanyal, T. SahaDasgupta, D. Jana, and A. Mookerjee, Phys. E. 61, 191 (2014).CrossRef
37.
39.
go back to reference N. Lu, H. Guo, L. Wang, X. Wu, and X.C. Van der Zeng, Nanoscale 6, 4566 (2014).CrossRef N. Lu, H. Guo, L. Wang, X. Wu, and X.C. Van der Zeng, Nanoscale 6, 4566 (2014).CrossRef
40.
go back to reference C. Jingjin, W. Zhiyong, D. Xueqiong, X. Jianrong, L. Mengqiu, and C. Tong, Phys. E Low-Dimens. Syst. Nanostruct. 124, 114365 (2020).CrossRef C. Jingjin, W. Zhiyong, D. Xueqiong, X. Jianrong, L. Mengqiu, and C. Tong, Phys. E Low-Dimens. Syst. Nanostruct. 124, 114365 (2020).CrossRef
41.
42.
go back to reference J. Halle, N. Neel, M. Fonin, M. Brandbyge, and J. Kroger, Nano Lett. 18, 95697 (2018).CrossRef J. Halle, N. Neel, M. Fonin, M. Brandbyge, and J. Kroger, Nano Lett. 18, 95697 (2018).CrossRef
43.
go back to reference G. Eliel, M. Moutinho, A. Gadelha, A. Righi, L. Campos, H. Ribeiro, P.-W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M.A. Pimenta, Nat. Commun. 9, 1221 (2018).CrossRef G. Eliel, M. Moutinho, A. Gadelha, A. Righi, L. Campos, H. Ribeiro, P.-W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M.A. Pimenta, Nat. Commun. 9, 1221 (2018).CrossRef
44.
go back to reference M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000), pp. 56–89.CrossRef M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000), pp. 56–89.CrossRef
45.
48.
go back to reference A. Pandya, S. Shinde, and P. Jha, Indian J. Pure Appl. Phys. 47, 523 (2009). A. Pandya, S. Shinde, and P. Jha, Indian J. Pure Appl. Phys. 47, 523 (2009).
50.
go back to reference V. Ariel, A. Natan, Electron effective mass in graphene, arXiv: 1206.6100v2 [Physics.gen-ph] (2012). V. Ariel, A. Natan, Electron effective mass in graphene, arXiv: 1206.6100v2 [Physics.gen-ph] (2012).
51.
go back to reference B.K. Ridley, Quantum Processes in Semiconductors (Oxford: Oxford University Press, 2013), pp. 282–316.CrossRef B.K. Ridley, Quantum Processes in Semiconductors (Oxford: Oxford University Press, 2013), pp. 282–316.CrossRef
52.
go back to reference A. Pandya, K. Sangani, and P. Jha, J. Phys. D: Appl. Phys. 53, 415103 (2020).CrossRef A. Pandya, K. Sangani, and P. Jha, J. Phys. D: Appl. Phys. 53, 415103 (2020).CrossRef
53.
go back to reference P. Kumari, S. Majumder, S. Rani, A.K. Nair, K. Kumari, K.M. Venkata, and S.J. Ray, Phys. Chem. Chem. Phys. 22, 5893 (2020).CrossRef P. Kumari, S. Majumder, S. Rani, A.K. Nair, K. Kumari, K.M. Venkata, and S.J. Ray, Phys. Chem. Chem. Phys. 22, 5893 (2020).CrossRef
54.
go back to reference Z. Huang, Y. Wu, X. Qi, C. He, X. Ren, and J. Zhong, Phys. Status Solidi(b) 255, 1700370 (2017).CrossRef Z. Huang, Y. Wu, X. Qi, C. He, X. Ren, and J. Zhong, Phys. Status Solidi(b) 255, 1700370 (2017).CrossRef
55.
go back to reference D. Tong, Lectures on the quantum Hall effect. arXiv preprint arXiv:1606.06687 (2016). D. Tong, Lectures on the quantum Hall effect. arXiv preprint arXiv:1606.06687 (2016).
58.
go back to reference C. Chen, F. Chen, X. Chen, B. Deng, B. Eng, D. Jung, Q. Guo, S. Yuan, K. Watanabe, T. Taniguchi, M.L. Lee, and F. Xia, Nano Lett. 19, 1488 (2019).CrossRef C. Chen, F. Chen, X. Chen, B. Deng, B. Eng, D. Jung, Q. Guo, S. Yuan, K. Watanabe, T. Taniguchi, M.L. Lee, and F. Xia, Nano Lett. 19, 1488 (2019).CrossRef
59.
60.
go back to reference A. Surrente, A.A. Mitioglu, K. Galkowski, W. Tabis, D.K. Maude, and P. Plochocka, Phys. Rev. B: Condens. Matter Mater. Phys. 93, 121405 (2016).CrossRef A. Surrente, A.A. Mitioglu, K. Galkowski, W. Tabis, D.K. Maude, and P. Plochocka, Phys. Rev. B: Condens. Matter Mater. Phys. 93, 121405 (2016).CrossRef
61.
go back to reference I. Khan, Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphoreneNanotechnology 27, 38570 (2016).CrossRef I. Khan, Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphoreneNanotechnology 27, 38570 (2016).CrossRef
62.
go back to reference C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).CrossRef C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).CrossRef
63.
go back to reference S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).CrossRef S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).CrossRef
64.
go back to reference B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).CrossRef B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).CrossRef
65.
go back to reference L. Matthes, O. Pulci, and F. Bechstedt, J. Phys. Condens. Matter 25, 395305 (2013).CrossRef L. Matthes, O. Pulci, and F. Bechstedt, J. Phys. Condens. Matter 25, 395305 (2013).CrossRef
66.
67.
go back to reference B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, and H. Zhu, Phys. Rev. B 94, 245420 (2016).CrossRef B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, and H. Zhu, Phys. Rev. B 94, 245420 (2016).CrossRef
Metadata
Title
Theoretical Insights on Bandgap Engineering for Nanoribbons of the 2D Materials Family with Co-Adatoms
Authors
Keyur Sangani
Ankur Pandya
Prafulla K. Jha
Publication date
14-06-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09039-8

Other articles of this Issue 9/2021

Journal of Electronic Materials 9/2021 Go to the issue

Topical Collection: Carbon-Based Materials for Energy Storage

Graphene for Thermal Storage Applications: Characterization, Simulation and Modelling