Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Theory of Ignition of Gas Suspensions

Authors : Nickolai M. Rubtsov, Boris S. Seplyarskii, Michail I. Alymov

Published in: Ignition and Wave Processes in Combustion of Solids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The analytical method of calculation of the critical size of the hot spot is created for greater values of a coefficient of heat exchange of particles and gas. By means of numerical calculations the functional dependence of the critical size of the hot spot on parameters following from the theory is validated; the range of applicability of approximate formulas is determined. Two mechanisms of the ignition of gas suspension by the hot spot are revealed for the first time
(a)
ignition of gas suspension as ignition in quasi-homogeneous single-temperature medium;
 
(b)
ignition of particles in the center of the hot spot due to violation of thermal balance between the rate of heat allocation from a particle and heat dissipation into the gas.
 
It is shown that the value of the minimum energy of ignition does not practically depend on the mass concentration of particles in gas suspension at a constant value of initial temperature \( \theta_{\text{in}} \). The method of calculation of the critical size of the hot spot \( R_{\text{cr}} \) can be used for determination of \( R_{\text{cr}} \) for the complex mechanism of interaction of particles with oxidizer (parallel, consecutive, independent reactions). Various mechanisms of critical phenomena for the kinetic and diffusion modes of ignition at pulse energy supply are established. At greater values of a heat exchange coefficient Z (a kinetic ignition mode) the critical duration of an impulse is equal to the time of establishment of a zero gradient on a border: a heater—gas suspension. At small values of a heat exchange coefficient Z (a diffusion mode of an ignition) the critical duration of an impulse is less than \( \tau_{0} \) and is found from the equality \( \tau_{1} = \tau_{2} \). Here \( \tau_{1} \)—the time of complete burning out of particles at the dimensionless coordinate \( \xi = 0 \), and \( \tau_{2} \)—the ignition time (transition to the diffusion mode of a reaction) of particles at \( \xi \to \xi_{\text{g}} + 0 \). The expressions allowing to determine necessary and sufficient conditions of the ignition of gas suspension by a heated body at pulse energy supply are obtained. Numerical calculations showed a possibility of application of approximate formulas for determining of minimum duration of an impulse necessary for the ignition of gas suspension. By means of numerical calculations, it is established that the minimum time required to attain the high-temperature combustion mode is reached at \( \tau_{\text{pul}} = \tau_{0} \). The investigation described allows calculating the minimum energy of ignition of hybrid gas suspension (oxidizer + combustible gas + combustible particles) with a hot spot using the data on the kinetics and thermal effects of gas-phase and heterogeneous reactions as well as on the amount of condensed phase in a unit of volume. The results of such calculation are necessary for the creation of safe conditions for carrying out technological processes, in which suspensions of combustible particles in gas containing oxidizer and small additives of combustible gas are formed. It was experimentally shown that at 650–750 °C coal gas suspension containing stoichiometric mixture of natural gas and the air does not burn over surface coated with coal powder due to inhibiting effect of gases evolving during thermal treatment of coal powder. The ignition of that gas suspension can be promoted with small amounts of chemically active additive (e.g., dichlorosilane). Thus, we can conclude that the improved model of ignition of gas suspension of solid particles in a mix oxidizer—combustible gas must take into account both inhibiting effect of gases evolving during thermal treatment of coal powder and the branched chain mechanism of gas combustion. However, in the presence of small quantities of methane (lean mixtures) the ignition of volatiles evolved from coal, can provide the subsequent methane ignition, because the volatiles are hydrocarbons, probably, polycyclic aromatic hydrocarbons (PAH).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Taubkin, S.I., Taubkin, I.S.: Fire and Explosion Safety of Dusty Materials and its Technological Processing. Moscow, Chemistry (1976). (in Russian) Taubkin, S.I., Taubkin, I.S.: Fire and Explosion Safety of Dusty Materials and its Technological Processing. Moscow, Chemistry (1976). (in Russian)
2.
go back to reference Korolchenko, A.Y.: Fire and Explosion Safety of Industrial Dust. Moscow, Chemistry (1986). (in Russian) Korolchenko, A.Y.: Fire and Explosion Safety of Industrial Dust. Moscow, Chemistry (1986). (in Russian)
3.
go back to reference Gubin, E.I., Dik, I.G.: On ignition of a dusty cloud with a spark, Combustion, Explosion, and Shock Waves. 22(10) (1986). (in Russian) Gubin, E.I., Dik, I.G.: On ignition of a dusty cloud with a spark, Combustion, Explosion, and Shock Waves. 22(10) (1986). (in Russian)
4.
go back to reference Burkina, R.S.: Ignition of a dusty cloud with a hot spot, Russian Journal of Physical Chemistry B. 9(12):1626 (1990). (in Russian) Burkina, R.S.: Ignition of a dusty cloud with a hot spot, Russian Journal of Physical Chemistry B. 9(12):1626 (1990). (in Russian)
5.
go back to reference Krainov, A.Y.: Numerical investigation of ignition of hybrid gas suspension (a mixture of reacting gases and particles) with different sources, Chemical Physics of processes of combustion and explosion, XII Symposium on combustion and explosion, Chernogolovka, 2000. (in Russian) Krainov, A.Y.: Numerical investigation of ignition of hybrid gas suspension (a mixture of reacting gases and particles) with different sources, Chemical Physics of processes of combustion and explosion, XII Symposium on combustion and explosion, Chernogolovka, 2000. (in Russian)
6.
go back to reference Merzhanov A.G.: On critical conditions of thermal explosion of a hot spot. Comb. Flame. 10(64), 341 (1966) Merzhanov A.G.: On critical conditions of thermal explosion of a hot spot. Comb. Flame. 10(64), 341 (1966)
7.
go back to reference Vilunov V.N.: Theory of ignition of condensed substances, Novosibirsk. Science (1984). (in Russian) Vilunov V.N.: Theory of ignition of condensed substances, Novosibirsk. Science (1984). (in Russian)
8.
go back to reference Seplyarskii B.S., Afanasiev S.Yu. On the theory of a local thermal explosion. Rus. J. Chem. Phys. B. 8(5), 646 (1989) Seplyarskii B.S., Afanasiev S.Yu. On the theory of a local thermal explosion. Rus. J. Chem. Phys. B. 8(5), 646 (1989)
9.
go back to reference Seplyarskii, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Combust. Explosion Shock Waves. 22(6), 9 (1989). (in Russian) Seplyarskii, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Combust. Explosion Shock Waves. 22(6), 9 (1989). (in Russian)
10.
go back to reference Rumanov, E.N., Haykin B.I.: Critical conditions of self-ignition of the assembly of particles. Combust. Explosion Shock Waves. 5, 129 (1969). (in Russian) Rumanov, E.N., Haykin B.I.: Critical conditions of self-ignition of the assembly of particles. Combust. Explosion Shock Waves. 5, 129 (1969). (in Russian)
11.
go back to reference Lisitsin V.I., Rumanov E.N., Haykin B.I.: On the induction period of self-ignition of the assembly of particles. Combust. Explosion Shock Waves. 7, 3 (1971). (in Russian) Lisitsin V.I., Rumanov E.N., Haykin B.I.: On the induction period of self-ignition of the assembly of particles. Combust. Explosion Shock Waves. 7, 3 (1971). (in Russian)
12.
go back to reference Eckhoff, R.K.: Dust Explosions in the Process Industries, 2nd edn. Butterworth-Heinemann, Oxford (1997) Eckhoff, R.K.: Dust Explosions in the Process Industries, 2nd edn. Butterworth-Heinemann, Oxford (1997)
13.
go back to reference Seplyarskii, B.S.: Analytical method of calculation of temporal characteristics of ignition of gas suspension with a heated body. Dokl. Phys. Chem. RAS 377(5), 653 (2001) Seplyarskii, B.S.: Analytical method of calculation of temporal characteristics of ignition of gas suspension with a heated body. Dokl. Phys. Chem. RAS 377(5), 653 (2001)
15.
go back to reference Seplyarskii, B.S., Gordopovova, V.S.: Investigations into features of ignition of condensed systems interacting through the layer of the product. Rus. J. Chem. Phys. B. 13(6), 117 (1994) Seplyarskii, B.S., Gordopovova, V.S.: Investigations into features of ignition of condensed systems interacting through the layer of the product. Rus. J. Chem. Phys. B. 13(6), 117 (1994)
16.
go back to reference Seplyarskii, B.S.: Nonstationary theory of ignition of condensed systems with a heated surface. Dokl. Phys. Chem. USSR 300(1), 96 (1988) Seplyarskii, B.S.: Nonstationary theory of ignition of condensed systems with a heated surface. Dokl. Phys. Chem. USSR 300(1), 96 (1988)
17.
go back to reference Seplyarskii B.S.: Ignition of condensed systems at gas filtration. Combust. Explosion Shock Waves. 27(1), 3 (1991). (in Russian) Seplyarskii B.S.: Ignition of condensed systems at gas filtration. Combust. Explosion Shock Waves. 27(1), 3 (1991). (in Russian)
18.
go back to reference Zel’dovich Y.B.: Theory of ignition with a heated surface. J. Exp. Theor. Phys. 9(1), 1530. (in Russian) Zel’dovich Y.B.: Theory of ignition with a heated surface. J. Exp. Theor. Phys. 9(1), 1530. (in Russian)
19.
go back to reference Franke, H.: Bestimmung der Minderstzudenergie von Kohlenstaub/Methan/Luft Gemisches (hybride Gemische), VDI-Berichte. N 304, P. 69 (1978) Franke, H.: Bestimmung der Minderstzudenergie von Kohlenstaub/Methan/Luft Gemisches (hybride Gemische), VDI-Berichte. N 304, P. 69 (1978)
20.
go back to reference Krainov, A.Y., Baimler, V.A.: Critical conditions of spark ignition of the mixture of gaseous oxidizer and fuel with reacting particles. Combust. Explosion Shock Waves. 38(3), 30 (2002). (in Russian) Krainov, A.Y., Baimler, V.A.: Critical conditions of spark ignition of the mixture of gaseous oxidizer and fuel with reacting particles. Combust. Explosion Shock Waves. 38(3), 30 (2002). (in Russian)
21.
go back to reference Seplyarskii, B.S., Kostin, S.V., Ivleva, T.P.: Analytical method of calculation of temporary characteristics of ignition of hybrid gas suspensions with a heated body. Dokl. Phys. Chem. RAS 394(5), 643 (2004) Seplyarskii, B.S., Kostin, S.V., Ivleva, T.P.: Analytical method of calculation of temporary characteristics of ignition of hybrid gas suspensions with a heated body. Dokl. Phys. Chem. RAS 394(5), 643 (2004)
22.
go back to reference Seplyarskii B.S., Ivleva, T.P.: Analysis of critical conditions of ignition of gas suspension with a heated body at pulse energy supply. Combust. Explosion Shock Waves. 2, 3 (2004). (in Russian) Seplyarskii B.S., Ivleva, T.P.: Analysis of critical conditions of ignition of gas suspension with a heated body at pulse energy supply. Combust. Explosion Shock Waves. 2, 3 (2004). (in Russian)
23.
go back to reference Seplyarskii, B.S., Kostin, S.V., Ivleva, T.P.: Analytical method for calculating time characteristics of ignition of hybrid gas suspensions by a hot body. Heat Transf. Res. 38, N2, 171 (2007) Seplyarskii, B.S., Kostin, S.V., Ivleva, T.P.: Analytical method for calculating time characteristics of ignition of hybrid gas suspensions by a hot body. Heat Transf. Res. 38, N2, 171 (2007)
24.
go back to reference Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Investigation into the ignition of coal powders in the presence of oxygen and natural gas by means of high-speed cinematography. Mendeleev Commun. 22, 47 (2012) Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Investigation into the ignition of coal powders in the presence of oxygen and natural gas by means of high-speed cinematography. Mendeleev Commun. 22, 47 (2012)
25.
go back to reference Lykov, A.V.: Theory of Heat Transfer. Moscow, High School (1967). (in Russian) Lykov, A.V.: Theory of Heat Transfer. Moscow, High School (1967). (in Russian)
26.
go back to reference Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Thermal ignition of coal–gas suspensions containing natural gas and oxygen. Mendeleev Commun. 18, 340 (2008). Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Thermal ignition of coal–gas suspensions containing natural gas and oxygen. Mendeleev Commun. 18, 340 (2008).
27.
go back to reference Herzberg, G.: Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules, 2nd edn. Van Nostrand, New York (1950) Herzberg, G.: Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules, 2nd edn. Van Nostrand, New York (1950)
28.
go back to reference Wainner, R.T., Seitzman, J.M.: Soot diagnostics using laser-induced incandescence in flames an exhaust flows. Am. Inst. Aeronaut. Astronaut. (AIAA) J. 37, 738 (1999) Wainner, R.T., Seitzman, J.M.: Soot diagnostics using laser-induced incandescence in flames an exhaust flows. Am. Inst. Aeronaut. Astronaut. (AIAA) J. 37, 738 (1999)
29.
go back to reference Rubtsov, N.M.: The Modes of Gaseous Combustion. Springer International Publishing, Switzerland (2016)CrossRef Rubtsov, N.M.: The Modes of Gaseous Combustion. Springer International Publishing, Switzerland (2016)CrossRef
30.
go back to reference Rubtsov, N.M., Seplyarskii, B.S., Tarasov, A.G., Tsvetkov, G.I., Chernysh, V.I.: Suppression of the ignition of coal powders in the presence of oxygen and natural gas with small additives of octadecafluorodecahydronaphthalene vapour. Mendeleev Commun. 22(3), 154 (2012) Rubtsov, N.M., Seplyarskii, B.S., Tarasov, A.G., Tsvetkov, G.I., Chernysh, V.I.: Suppression of the ignition of coal powders in the presence of oxygen and natural gas with small additives of octadecafluorodecahydronaphthalene vapour. Mendeleev Commun. 22(3), 154 (2012)
31.
go back to reference Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Thermal ignition of coal powders in the presence of natural gas, oxygen and chemically active additives. Mendeleev Commun. 20(2), 98 (2010)CrossRef Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Thermal ignition of coal powders in the presence of natural gas, oxygen and chemically active additives. Mendeleev Commun. 20(2), 98 (2010)CrossRef
32.
go back to reference Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Different effects of active minor admixtures on hydrogen and methane ignitions. Kinet. Catal. 49, 344 (2008) Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Different effects of active minor admixtures on hydrogen and methane ignitions. Kinet. Catal. 49, 344 (2008)
33.
go back to reference Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability. AS USSR, Moscow (1958). (in Russian) Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability. AS USSR, Moscow (1958). (in Russian)
Metadata
Title
Theory of Ignition of Gas Suspensions
Authors
Nickolai M. Rubtsov
Boris S. Seplyarskii
Michail I. Alymov
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-56508-8_5

Premium Partners