Skip to main content
Top

2019 | OriginalPaper | Chapter

Thermal and Resistance Analysis of Perforated Fin Using CFD

Authors : Kuldeep Panwar, Etkaf Hasan, Renu Singh, Vijay Chaudhary, Kuldeep Rawat

Published in: Advances in Fluid and Thermal Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present paper deals with the study of the heat transfer and friction characteristics under turbulent flow within a perforated fin. Standard computational methods using CFD have been used for creating the flow and heat transfer environment similar to that of experiments done by various researchers. To simulate the turbulent flow regime, k–Ɛ turbulence model is selected during the CFD simulation. The results obtained from the simulation for both solid and perforated fin is compared on the basis of fin geometries and effectiveness. The results clearly indicate that the perforation in fin increases heat transfer rate as compared to the solid fin.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Incropera FP, DeWitt DP (1996) Fundamental of heat and mass transfer to heat transfer, 3nd edn. Wiley Incropera FP, DeWitt DP (1996) Fundamental of heat and mass transfer to heat transfer, 3nd edn. Wiley
2.
go back to reference Shaeri MR, Yaghoubi M (2009) Heat transfer analysis of lateral perforated fin heat sinks. Appl Energy 86:2019–2029CrossRef Shaeri MR, Yaghoubi M (2009) Heat transfer analysis of lateral perforated fin heat sinks. Appl Energy 86:2019–2029CrossRef
3.
go back to reference Dogruoz MB, Urdaneta M, Ortega A (2005) Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow. Int J Heat Mass Transfer 48:5058–5071CrossRef Dogruoz MB, Urdaneta M, Ortega A (2005) Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow. Int J Heat Mass Transfer 48:5058–5071CrossRef
4.
go back to reference Yu E, Joshi Y (2002) Heat transfer enhancement from enclosed discrete components using pin–fin heat sinks. Int J Heat Mass Transfer 45:4957–4966CrossRef Yu E, Joshi Y (2002) Heat transfer enhancement from enclosed discrete components using pin–fin heat sinks. Int J Heat Mass Transfer 45:4957–4966CrossRef
5.
go back to reference Baskaya S, Sivrioglu M, Ozek M (2000) Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. Int J Therm Sci 39:797–805CrossRef Baskaya S, Sivrioglu M, Ozek M (2000) Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. Int J Therm Sci 39:797–805CrossRef
6.
go back to reference Panwar K, Murthy DS (2015) Analysis of thermal characteristics of the ball packed thermal regenerator. Procedia Eng 127:118–1125CrossRef Panwar K, Murthy DS (2015) Analysis of thermal characteristics of the ball packed thermal regenerator. Procedia Eng 127:118–1125CrossRef
7.
go back to reference Ledezma G, Morega AM, Bejan A (1996) Optimal spacing between pin fins with impinging flow. ASME J Heat Transfer 7:118–570 Ledezma G, Morega AM, Bejan A (1996) Optimal spacing between pin fins with impinging flow. ASME J Heat Transfer 7:118–570
8.
go back to reference Maveety JG, Jung HH (2000) Design of an optimal pin–fin heat sink with air impingement cooling. Int Commun Heat Mass Transfer 27(2):229–240CrossRef Maveety JG, Jung HH (2000) Design of an optimal pin–fin heat sink with air impingement cooling. Int Commun Heat Mass Transfer 27(2):229–240CrossRef
9.
go back to reference Meinders ER, Hanjalic K, Martinuzzi RJ (1999) Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow. J Heat Transfer 73:121–564 Meinders ER, Hanjalic K, Martinuzzi RJ (1999) Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow. J Heat Transfer 73:121–564
10.
go back to reference Yaghoubi M, Velayati E (2005) Undeveloped convective heat transfer from an array of cubes in cross-stream direction. Int J Therm Sci 44:756–765CrossRef Yaghoubi M, Velayati E (2005) Undeveloped convective heat transfer from an array of cubes in cross-stream direction. Int J Therm Sci 44:756–765CrossRef
11.
go back to reference Sahin B, Yakut K, Kotcioglu I, Celik C (2005) Optimum design parameters of a heat exchanger. Appl Energy 82:90–106CrossRef Sahin B, Yakut K, Kotcioglu I, Celik C (2005) Optimum design parameters of a heat exchanger. Appl Energy 82:90–106CrossRef
12.
go back to reference Xiao Q, Tao WQ (1990) Effect of fin spacing on heat transfer and pressure drop of two–row corrugated–fin and tube heat exchangers. Int Com Heat Mass Transfer 17:577–586CrossRef Xiao Q, Tao WQ (1990) Effect of fin spacing on heat transfer and pressure drop of two–row corrugated–fin and tube heat exchangers. Int Com Heat Mass Transfer 17:577–586CrossRef
13.
go back to reference Sara ON, Pekdemir T, Yapici S, Yilmaz M (2001) Heat-transfer enhancement in a channel flow with perforated rectangular blocks. Int J Heat Fluid Flow 22:509–518CrossRef Sara ON, Pekdemir T, Yapici S, Yilmaz M (2001) Heat-transfer enhancement in a channel flow with perforated rectangular blocks. Int J Heat Fluid Flow 22:509–518CrossRef
14.
go back to reference Dorignac E, Vullierme JJ, Broussely M, Foulon C, Mokkadem M (2005) Experimental heat transfer on the windward surface of a perforated flat plate. Int J Thermal Sci 44:885–893CrossRef Dorignac E, Vullierme JJ, Broussely M, Foulon C, Mokkadem M (2005) Experimental heat transfer on the windward surface of a perforated flat plate. Int J Thermal Sci 44:885–893CrossRef
15.
go back to reference Chang SW, Su LM, Yang TL, Chiou SF (2004) Enhancement heat transfer of forces convective fin flow with transverse ribs. Int J Thermal Sci 43:185–200CrossRef Chang SW, Su LM, Yang TL, Chiou SF (2004) Enhancement heat transfer of forces convective fin flow with transverse ribs. Int J Thermal Sci 43:185–200CrossRef
16.
go back to reference Panwar K, Murthy DS (2016) Design and evaluation of pebble bed regenerator with small particles. Mater Today 3:3784–3791 Panwar K, Murthy DS (2016) Design and evaluation of pebble bed regenerator with small particles. Mater Today 3:3784–3791
17.
go back to reference Shaeri MR, Yaghoubi M (2009) Numerical analysis of turbulent convection heat transfer from an array of perforated fins. Int J Heat Fluid Flow 30:218–228CrossRef Shaeri MR, Yaghoubi M (2009) Numerical analysis of turbulent convection heat transfer from an array of perforated fins. Int J Heat Fluid Flow 30:218–228CrossRef
Metadata
Title
Thermal and Resistance Analysis of Perforated Fin Using CFD
Authors
Kuldeep Panwar
Etkaf Hasan
Renu Singh
Vijay Chaudhary
Kuldeep Rawat
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6416-7_56

Premium Partners