Skip to main content
Top

2019 | OriginalPaper | Chapter

Thermal Behaviour and Crystallization of Green Biocomposites

Author : Vasile Cristian Grigoras

Published in: Sustainable Polymer Composites and Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermal behaviour of the green composites (GCs) was an interesting issue discussed in many studies of recent years. In the foreground, unquestionable is the role played by the interface between natural fibers or cellulose nanoparticles and the polymer matrix, which also is most presented in this chapter. There were presented the effects at interfaces on thermal behaviour of the different polymer matrix, most of them biodegradable, that was reinforced using various methods with natural fillers (fibers or cellulose nanoparticles) isolated and extracted from different bioresources. Before starts to present literature results, the most common thermal analytical techniques were reviewed. Thermal behaviour of the most representative from the GCs class was presented in this chapter. Because interfaces of GCs show a greater impact on thermal transitions, firstly were presented results related to the stable temperature range when the important thermal transitions like glass transition, melting or/and (cold) crystallization occurs. The modifications occurred on glass transition, melting and crystallization temperatures or on the crystallinity index were discussed as a function of their content in the GCs or by chemical treatment applied (e.g. hydrolyzation, alkalinization, silanization) or surface treatments on fillers. The role of fillers reinforced in a polymer matrix, which affects morphology development at interface region was highlighted, too. Then, in the next chapter subsection were presented representative works for a discussed domain that emphasize once again the interface effects on the thermal degradation temperatures or on the mechanism of the thermal degradation as well. Also, fibers content or applied chemical treatment showed a major effect on thermal degradation as will be seen next. Like a general conclusion on thermal behavior of the GCs, three important key factors in the preparing of a GCs were highlighted: the natural filler dimensions (high aspect ratio), a good dispersion (to prevent heterogeneity), and the last, but maybe most important, is the chemical treatment applied on the surface. If these conditions were fulfilled, a biomaterial presenting good thermal properties automatically will show good mechanical performances, too.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Das O, Bhattacharyya D, Sarmah AK (2016) Sustainable ecocomposites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J Clean Prod 129:159–168CrossRef Das O, Bhattacharyya D, Sarmah AK (2016) Sustainable ecocomposites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J Clean Prod 129:159–168CrossRef
2.
go back to reference Mathot VBF (ed) (1994) Calorimetry and thermal analysis of polymers. Carl Hanser Verlag, München Mathot VBF (ed) (1994) Calorimetry and thermal analysis of polymers. Carl Hanser Verlag, München
3.
go back to reference Turi EA (ed) (1997) Thermal characterization of polymeric materials. Academic Press, New York Turi EA (ed) (1997) Thermal characterization of polymeric materials. Academic Press, New York
4.
go back to reference Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 149:582–596CrossRef Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 149:582–596CrossRef
5.
go back to reference Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mat Sci Eng A 557:17–28CrossRef Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mat Sci Eng A 557:17–28CrossRef
6.
go back to reference Signori F, Pelagaggi M, Bronco S et al (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRef Signori F, Pelagaggi M, Bronco S et al (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRef
7.
go back to reference Shinoj S, Visvanathan R, Panigrahi S et al (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22CrossRef Shinoj S, Visvanathan R, Panigrahi S et al (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22CrossRef
8.
go back to reference Cuinat-Guerraz N, Dumont M-J, Hubert P, (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A 88:140–147 Cuinat-Guerraz N, Dumont M-J, Hubert P, (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A 88:140–147
9.
go back to reference Yu T, Ren J, Li S et al (2010) Effect of fiber surface treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505 Yu T, Ren J, Li S et al (2010) Effect of fiber surface treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505
10.
go back to reference Yu T, Jiang N et al (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146 Yu T, Jiang N et al (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146
11.
go back to reference Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340 Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340
12.
go back to reference Haafiz M, Hassan A, Khalil A et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378CrossRef Haafiz M, Hassan A, Khalil A et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378CrossRef
13.
go back to reference Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473CrossRef Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473CrossRef
14.
go back to reference Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842CrossRef Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842CrossRef
15.
go back to reference Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRef Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRef
16.
go back to reference Hu X, Xu C, Gao J et al (2013) Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos Sci Technol 78:63–68CrossRef Hu X, Xu C, Gao J et al (2013) Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos Sci Technol 78:63–68CrossRef
17.
go back to reference Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810CrossRef Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810CrossRef
18.
go back to reference Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef
19.
go back to reference Chaichi M, Hashemi M, Badii F et al (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175CrossRef Chaichi M, Hashemi M, Badii F et al (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175CrossRef
20.
go back to reference Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef
21.
go back to reference Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A 37:80–91CrossRef Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A 37:80–91CrossRef
22.
go back to reference Liu H, Huang Y et al (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym 79:513–519CrossRef Liu H, Huang Y et al (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym 79:513–519CrossRef
23.
go back to reference Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mat Sci 78–79:1–92CrossRef Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mat Sci 78–79:1–92CrossRef
24.
go back to reference Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybutyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509CrossRef Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybutyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509CrossRef
25.
go back to reference Dobreva T, Perena JM, Perez E et al (2010) Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with Kenaf fiber and rice straw. Polym Compos 31(6):974–984CrossRef Dobreva T, Perena JM, Perez E et al (2010) Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with Kenaf fiber and rice straw. Polym Compos 31(6):974–984CrossRef
26.
go back to reference Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778CrossRef Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778CrossRef
27.
go back to reference Zhao Q, Tao J, Yam RCM et al (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576CrossRef Zhao Q, Tao J, Yam RCM et al (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576CrossRef
28.
go back to reference Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid). Compos Part A 58:24–29 Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid). Compos Part A 58:24–29
29.
go back to reference Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146 Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146
30.
go back to reference Dong Y, Ghataura A, Takagi H et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84 Dong Y, Ghataura A, Takagi H et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84
31.
go back to reference Wang Y, Tong B, Hou S et al (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A 42:66–74 Wang Y, Tong B, Hou S et al (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A 42:66–74
32.
go back to reference Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103CrossRef Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103CrossRef
33.
go back to reference Chollakup R, Tantatherdtam R, Ujjin S et al (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRef Chollakup R, Tantatherdtam R, Ujjin S et al (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRef
34.
go back to reference Torres-Tello EV, Robledo-Ortíz JR, González-García Y et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125CrossRef Torres-Tello EV, Robledo-Ortíz JR, González-García Y et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125CrossRef
35.
go back to reference Ding WD, Jahani D, Chang E et al (2016) Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos Part A 83:130–139 Ding WD, Jahani D, Chang E et al (2016) Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos Part A 83:130–139
36.
go back to reference Le Moigne N, Longerey M, Taulemesse J-M et al (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494CrossRef Le Moigne N, Longerey M, Taulemesse J-M et al (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494CrossRef
37.
go back to reference Pracella M, Chionna D, Anguillesi I et al (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66:2218–2230CrossRef Pracella M, Chionna D, Anguillesi I et al (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66:2218–2230CrossRef
38.
go back to reference Yang S, Madbouly SA, Schrader JA et al (2015) Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem 17:380–393CrossRef Yang S, Madbouly SA, Schrader JA et al (2015) Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem 17:380–393CrossRef
39.
go back to reference Cai J, Liu M, Wang L et al (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef Cai J, Liu M, Wang L et al (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef
40.
go back to reference Cai J, Xiong Z, Zhou M et al (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef Cai J, Xiong Z, Zhou M et al (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef
41.
go back to reference Luduena L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421CrossRef Luduena L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421CrossRef
42.
go back to reference Du Y, Wu T, Yan N et al (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B 56:717–723 Du Y, Wu T, Yan N et al (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B 56:717–723
43.
go back to reference Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef
44.
go back to reference Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778CrossRef Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778CrossRef
45.
go back to reference Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594CrossRef Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594CrossRef
46.
go back to reference Haafiz MKM, Hassan A, Zakaria Z et al (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145CrossRef Haafiz MKM, Hassan A, Zakaria Z et al (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145CrossRef
47.
go back to reference Kowalczyk M, Piorkowska E, Kulpinski P et al (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A 42:1509–1514CrossRef Kowalczyk M, Piorkowska E, Kulpinski P et al (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A 42:1509–1514CrossRef
48.
go back to reference Benhamou K, Kaddami H, Magnin A et al (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211CrossRef Benhamou K, Kaddami H, Magnin A et al (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211CrossRef
49.
go back to reference Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–382CrossRef Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–382CrossRef
50.
go back to reference Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRef
51.
go back to reference Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef
52.
go back to reference Herrera N, Salaberria AM, Mathew AP et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97 Herrera N, Salaberria AM, Mathew AP et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97
53.
go back to reference Almasi H, Ghanbarzadeh B, Dehghannya J (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Pack Shelf Life 5:21–31CrossRef Almasi H, Ghanbarzadeh B, Dehghannya J (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Pack Shelf Life 5:21–31CrossRef
54.
go back to reference Mariano P, Minhaz-Ul H, Debora P (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728CrossRef Mariano P, Minhaz-Ul H, Debora P (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728CrossRef
55.
go back to reference Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRef Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRef
56.
go back to reference Bitinis N, Fortunati E, Verdejo R et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627CrossRef Bitinis N, Fortunati E, Verdejo R et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627CrossRef
57.
go back to reference Yu HY, Qin ZY, Liu L et al (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRef Yu HY, Qin ZY, Liu L et al (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRef
58.
go back to reference Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114CrossRef Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114CrossRef
59.
go back to reference Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide)(PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRef Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide)(PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRef
60.
go back to reference Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRef Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRef
61.
go back to reference Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos Part A 83:80–88 Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos Part A 83:80–88
62.
go back to reference Yu HY, Qin ZY (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478CrossRef Yu HY, Qin ZY (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478CrossRef
63.
go back to reference Arrieta MP, López J, López D et al (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301CrossRef Arrieta MP, López J, López D et al (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301CrossRef
64.
go back to reference Malmir S, Montero B, Rico M et al (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A 93:41–48 Malmir S, Montero B, Rico M et al (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A 93:41–48
65.
go back to reference Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60CrossRef Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60CrossRef
66.
go back to reference Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126CrossRef Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126CrossRef
67.
go back to reference Rosa MF, Chiou BS, Medeiros ES et al (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100:5196–5202CrossRef Rosa MF, Chiou BS, Medeiros ES et al (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100:5196–5202CrossRef
68.
go back to reference Morandim-Giannetti AA, Agnelli JAM, Lanças BZ et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568CrossRef Morandim-Giannetti AA, Agnelli JAM, Lanças BZ et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568CrossRef
69.
go back to reference Guigo N, Mija A, Vincent L et al (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023CrossRef Guigo N, Mija A, Vincent L et al (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023CrossRef
70.
go back to reference Deka H, Misra M, Mohanty A (2013) Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101CrossRef Deka H, Misra M, Mohanty A (2013) Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101CrossRef
71.
go back to reference Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98:2752–2759CrossRef Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98:2752–2759CrossRef
72.
go back to reference Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208CrossRef Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208CrossRef
73.
go back to reference Panaitescu DM, Vuluga Z, Ghiurea M et al (2015) Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B 69:286–295 Panaitescu DM, Vuluga Z, Ghiurea M et al (2015) Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B 69:286–295
74.
go back to reference Bakare FO, Ramamoorthy SK, Åkesson D et al (2016) Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos Part A 83:176–184 Bakare FO, Ramamoorthy SK, Åkesson D et al (2016) Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos Part A 83:176–184
75.
go back to reference Kim KW, Lee BH, Kim HJ et al (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139CrossRef Kim KW, Lee BH, Kim HJ et al (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139CrossRef
76.
go back to reference Thao Tran TP, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA)biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124CrossRef Thao Tran TP, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA)biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124CrossRef
77.
go back to reference Thakur VJ, Thakur MT, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51CrossRef Thakur VJ, Thakur MT, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51CrossRef
78.
go back to reference Priya B, Gupta VK, Pathania D (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fiber. Carbohydr Polym 109:171–179CrossRef Priya B, Gupta VK, Pathania D (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fiber. Carbohydr Polym 109:171–179CrossRef
79.
go back to reference Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef
80.
go back to reference Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88CrossRef Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88CrossRef
81.
go back to reference Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef
82.
go back to reference Garcia NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210CrossRef Garcia NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210CrossRef
83.
go back to reference Montero B, Rico M, Rodríguez-Llamazares S et al (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104CrossRef Montero B, Rico M, Rodríguez-Llamazares S et al (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104CrossRef
84.
go back to reference Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef
85.
go back to reference Martins IMG, Magina SP, Oliveira L et al (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168CrossRef Martins IMG, Magina SP, Oliveira L et al (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168CrossRef
86.
go back to reference Meneguin AB, Cury BSF, Dos Santos AM (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023CrossRef Meneguin AB, Cury BSF, Dos Santos AM (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023CrossRef
Metadata
Title
Thermal Behaviour and Crystallization of Green Biocomposites
Author
Vasile Cristian Grigoras
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_41

Premium Partners